已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),則下列結(jié)論中正確的是( 。
A、向量
a
與向量
b
共線
B、向量
a
在向量
b
方向上的投影為1
C、對(duì)同一平面內(nèi)任意向量
d
,都存在實(shí)數(shù)k1,k2,使得
d
=k1
b
+k2
c
D、若
c
1
a
2
b
(λ1,λ2∈R),則λ1=0,λ2=-2
考點(diǎn):平面向量坐標(biāo)表示的應(yīng)用
專題:平面向量及應(yīng)用
分析:根據(jù)已知中平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),可判斷出
a
b
,且
b
c
,逐一判斷四個(gè)答案的真假,可得答案.
解答:解:∵向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),
a
b
=0,即
a
b
,故A錯(cuò)誤;
此時(shí)向量
a
在向量
b
方向上的投影為0,故B錯(cuò)誤;
又∵
c
=-2
b
,故
b
c
,
b
c
不能做為平面上的一組基底,故C錯(cuò)誤;
由平面向量的基本定理,可得
c
1
a
2
b
時(shí),λ1=0,λ2=-2,故D正確;
故選:D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面向量的基本定理,向量共線與垂直,是平面向量的簡(jiǎn)單綜合應(yīng)用,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的N是3,那么輸出的S是( 。
A、-399B、-55C、-35D、-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Ω={(x,y)||x|+|y|≤4},A={(x,y)|x2+y2≤8},向區(qū)域Ω內(nèi)隨機(jī)投一點(diǎn)P,則點(diǎn)P落入到區(qū)域A的概率為( 。
A、
8-π
8
B、
4-π
4
C、
π
8
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
cos(ωx+φ)+1(ω>0)的圖象的一條對(duì)稱軸為直線x=
π
3
,且f(
π
12
)=1,則ω的最小值為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,4),
b
=(-1,1),則2
a
-
b
=( 。
A、(5,7)
B、(5,9)
C、(3,7)
D、(3,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
b
滿足|
a
|=2,
b
a
方向上的投影為1,若存在實(shí)數(shù)λ,使得
a
a
b
垂直,則λ=( 。
A、
1
2
B、1
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=3,則sin(2α+
π
4
)
的值為( 。
A、-
2
10
B、
2
10
C、
5
2
10
D、
7
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2012,其前n項(xiàng)和為Sn,若
S2012
2012
-
S10
10
=2002
,則S2014的值等于( 。
A、2011B、-2012
C、2014D、-2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題錯(cuò)誤的是( 。
A、若命題P:?x0∈R,x02-x0+1≥0,則¬P:?x∈R,x2-x+1<0
B、若命題p∨q為真,則p∧q為真
C、一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同
D、根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為
y
=
a
+
b
x中,若
b
=2,
.
x
=1,
.
y
=3,則
a
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案