【題目】△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC,
(1)求角B的大小;
(2)若△ABC的面積為為 且b= ,求a+c的值.

【答案】
(1)解:又A+B+C=π,即C+B=π﹣A,

∴sin(C+B)=sin(π﹣A)=sinA,

將(2a﹣c)cosB=bcosC,利用正弦定理化簡得:(2sinA﹣sinC)cosB=sinBcosC,

∴2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA,

在△ABC中,0<A<π,sinA>0,∴cosB= ,又0<B<π,則B=


(2)解:∵△ABC的面積為 ,sinB=sin =

∴S= acsinB= ac= ,∴ac=3,又b= ,cosB=cos = ,

∴由余弦定理b2=a2+c2﹣2accosB得:a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣9=3,

∴(a+c)2=12,則a+c=2


【解析】(1)結(jié)合三角形的內(nèi)角和定理及誘導(dǎo)公式可得sin(C+B)=sinA,再對(duì)已知(2a﹣c)cosB=bcosC,利用正弦定理化簡可求B(2)結(jié)合三角形的面積公式S= acsinB,可求ac,由已知b,B,再利用余弦定理b2=a2+c2﹣2accosB可求a+c

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)是R上的偶函數(shù),則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化簡計(jì)算:
(1)化簡:
(2)已知:sinαcosα= ,且 <α< ,求cosα﹣sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長方體,第二次切削沿長方體的對(duì)角面刨開,得到兩個(gè)三棱柱,第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線刨開得到兩個(gè)鱉臑和兩個(gè)陽馬,則陽馬與鱉臑的體積之比為(
A.3:1
B.2:1
C.1:1
D.1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x||x﹣1|<2},B={x|x2﹣2mx+m2﹣1<0}.
(1)當(dāng)m=3時(shí),求A∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,Sn是數(shù)列{bn}的前n項(xiàng)和,對(duì)任意正整數(shù)n不等式 恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解小學(xué)生的體能情況,抽取了某小學(xué)同年級(jí)部分學(xué)生進(jìn)行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示,已知圖中從左到右前三個(gè)小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率;
(2)參加這次測試的學(xué)生人數(shù)是多少?
(3)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,則PB與平面PCD所成角的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定點(diǎn)F1(0,﹣3)、F2(0,3),動(dòng)點(diǎn)P滿足條件|PF1|+|PF2|=a+ (a>0),則點(diǎn)P的軌跡是(
A.橢圓
B.線段
C.不存在
D.橢圓或線段

查看答案和解析>>

同步練習(xí)冊(cè)答案