【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
【答案】(1)列聯(lián)表見解析;(2)有的把握認(rèn)為喜歡游泳與性別有關(guān);(3).
【解析】
試題分析:(1)根據(jù)題意完成列聯(lián)表;(2)根據(jù)給出的公式求出相關(guān)系數(shù)的值,對(duì)比臨界值表,若,則有的把握認(rèn)為喜歡游泳與性別有關(guān),否則無關(guān);(3)名學(xué)生中喜歡游泳的名學(xué)生記為,另外名學(xué)生記為,任取名學(xué)生,列出所有可能情況,從中找出從這名學(xué)生中隨機(jī)抽取人,恰好有人喜歡游泳的情況,作比即得所求的概率.
試題解析:(1)因?yàn)樵?00人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為,
所以喜歡游泳的學(xué)生人數(shù)為人...................1分
其中女生有20人,則男生有40人,列聯(lián)表補(bǔ)充如下:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 40 | 10 | 50 |
女生 | 20 | 30 | 50 |
合計(jì) | 60 | 40 | 100 |
................................................4分
因?yàn)?/span>................... 7分
所以有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)......................8分
(2)5名學(xué)生中喜歡游泳的3名學(xué)生記為,另外2名學(xué)生記為1,2,任取2名學(xué)生,則所有可能情況為,共10種.........10分
其中恰有1人喜歡游泳的可能情況為,共6種........... 11分
所以,恰好有1人喜歡游泳的概率為............12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不重合的直線和兩個(gè)不重合的平面,若,則下列四個(gè)命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且和直線相切,記動(dòng)圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過的直線交于一點(diǎn),交軸于點(diǎn),過點(diǎn)作的垂線交于另一點(diǎn),若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時(shí)間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時(shí)間介于1小時(shí)和11小時(shí)之間,按學(xué)生的學(xué)習(xí)時(shí)間分成5組:第一組,第二組,第三組,第四組,第五組,繪制成如圖所示的頻率分布直方圖.
(1)求學(xué)習(xí)時(shí)間在的學(xué)生人數(shù);
(2)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人學(xué)習(xí)時(shí)間在第四組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)(a為常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=x2+(a+2)x﹣3,x∈[a,b]的圖象關(guān)于直線x=1對(duì)稱.
(1)求a、b的值和函數(shù)的零點(diǎn)
(2)當(dāng)函數(shù)f(x)的定義域是[0,3]時(shí),求函數(shù)f(x)的值域..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點(diǎn)在上,且.
(Ⅰ)已知點(diǎn)在上,且,求證:平面平面;
(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí), (萬元).當(dāng)年產(chǎn)量不小于80千件時(shí), (萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com