(2009山東卷文) (本小題滿分14分)
設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
當(dāng)m=0時(shí),方程表示兩直線,方程為;
當(dāng)時(shí), 方程表示的是圓
當(dāng)且時(shí),方程表示的是橢圓;
當(dāng)時(shí),方程表示的是雙曲線.
1
解(1)因?yàn)?img width=39 height=23 src="http://thumb.zyjl.cn/pic1/1899/sx/63/401863.gif" >,,,
所以, 即.
程
(2).當(dāng)時(shí), 軌跡E的方程為,設(shè)圓心在原點(diǎn)的圓的一條切線為,解方程組得,即,
要使切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,
則使△=,
即,即, 且
,
要使, 需使,即,
所以, 即且, 即恒成立.
所以又因?yàn)橹本為圓心在原點(diǎn)的圓的一條切線,
所以圓的半徑為,, 所求的圓為.
當(dāng)切線的斜率不存在時(shí),切線為,與交于點(diǎn)或也滿足.
綜上, 存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.
(3)當(dāng)時(shí),軌跡E的方程為,設(shè)直線的方程為,因?yàn)橹本與圓C:(1<R<2)相切于A1, 由(2)知, 即 ①,
因?yàn)?img width=9 height=19 src="http://thumb.zyjl.cn/pic1/1899/sx/99/401899.gif" >與軌跡E只有一個(gè)公共點(diǎn)B1,
由(2)知得,
即有唯一解
則△=, 即, ②
由①②得, 此時(shí)A,B重合為B1(x1,y1)點(diǎn),
由 中,所以,,
B1(x1,y1)點(diǎn)在橢圓上,所以,所以,
在直角三角形OA1B1中,因?yàn)?img width=80 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/118/401918.gif" >當(dāng)且僅當(dāng)時(shí)取等號,所以,即
當(dāng)時(shí)|A1B1|取得最大值,程
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2009山東卷文)在區(qū)間上隨機(jī)取一個(gè)數(shù)x,的值介于0到之間的概率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009山東卷文)已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“”是“”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009山東卷文)已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“”是“”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009山東卷文)(本小題滿分14分)
設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com