己知橢圓C:的左、右焦點(diǎn)為,離心率為。直線軸、軸分別交于點(diǎn)A、B,M是直線橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),設(shè)
(1)證明:                                 
(2)確定的值,使得是等腰三角形。
解法一:(Ⅰ)設(shè)點(diǎn),則,由得:

,化簡(jiǎn)得
解法二:(Ⅰ)由得:
,

所以點(diǎn)的軌跡是拋物線,由題意,軌跡的方程為:
(Ⅱ)設(shè)直線的方程為:
.設(shè),,又
聯(lián)立方程組,消去得:,,故
,得:
,整理得:,,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分13分)
已知橢圓,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切。
(1)求橢圓C的方程;
(2)設(shè)軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓
于另一點(diǎn),證明:直線x軸相交于定點(diǎn);
(3)在(2)的條件下,過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),求的取值
范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)
如圖,直角梯形ABCD,∠,AD∥BC,AB=2,AD=,BC=橢圓F以A、B為焦點(diǎn)且過(guò)點(diǎn)D,

(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
Ⅱ)若點(diǎn)E滿足,是否存在斜率兩點(diǎn),且,若存在,求K的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿分l2分)
設(shè)橢圓的焦點(diǎn)分別為,直線軸于點(diǎn),且
(Ⅰ)試求橢圓的方程;
(Ⅱ)過(guò)分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形面積的最大值和最小值.


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)
已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是(0,),(0,),又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知點(diǎn),點(diǎn)A、B分別在x軸負(fù)半軸和y軸上,且,點(diǎn)滿足,當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí),記點(diǎn)C的軌跡為E。
(1)求曲線E的方程;
(2)過(guò)點(diǎn)Q(1,0)且斜率為k的直線交曲線E于不同的兩點(diǎn)M、N,若D(,0),且
·>0,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求過(guò)點(diǎn)且與橢圓有相同焦點(diǎn)的橢圓標(biāo)準(zhǔn)方程解。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦距為2,則的值為     .  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的焦點(diǎn)為,且過(guò)點(diǎn)
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線交橢圓兩點(diǎn),求線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案