已知P是橢圓(a>b>0)上任意一點(diǎn),P與兩焦點(diǎn)連線互相垂直,且P到兩準(zhǔn)線距離分別為6、12,則橢圓方程為(    )。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為
3
5
,焦點(diǎn)坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知A(-3,0),B(3,0),P是橢圓C上異于A、B的任意一點(diǎn),直線AP、BP分別交y軸于M、N,求
OM
ON
的值;
(3)在(2)的條件下,若G(s,0),H(k,0),且
GM
HN
,(s<k),分別以O(shè)G、OH為邊作兩正方形,求此兩正方形的面積和的最小值,并求出取得最小值時(shí)的G、H點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為
2
5
5

(1)求橢圓C的方程;
(2)過(guò)原點(diǎn)且斜率為
1
2
的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫(xiě)出理由;
(3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•佛山二模)已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)為F1(-
3
,0),而且過(guò)點(diǎn)H(
3
1
2
).
(1)求橢圓E的方程;
(2)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2,P是橢圓上異于A1,A2的任一點(diǎn),直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為G.證明:線段OT的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:=1(a>b>0)過(guò)點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:=1(a>b>0)過(guò)點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.

查看答案和解析>>

同步練習(xí)冊(cè)答案