已知P、Q是拋物線C:y=x2上兩動點,直線l1、l2分別是拋物線C在點P、Q處的切線,且l1⊥l2,l1∩l2=M.
(1)求點M的縱坐標;
(2)直線PQ是否經(jīng)過一定點?試證之;
(3)求△PQM的面積的最小值.
分析:(1)由題意,點M是兩切線的交點,故可以求出兩條切線的方程,解出兩切線交點的坐標即點M的坐標,再由兩切線垂直,其斜率的乘積為-1,求出點M的縱坐標;
(2)由點斜式寫出過兩點的直線的方程,易得其過定點(0,
1
4
);
(3)由題意,可由兩點間距離公式求出線段PQ的參數(shù)表達式,再由點到直線的距離公式求出點M到直線PQ的參數(shù)表達式,由面積公式建立面積關(guān)于參數(shù)的函數(shù),求出函數(shù)的最值,即可得到面積的最值.
解答:解:(1)設(shè)P(x1,x12),Q(x2,x22),(x1≠x2),又y'=2x,則:
l1:y=2x1(x-x1)+x12
l2:y=2x2(x-x2)+x22
⇒M(
x1+x2
2
,x1x2

又l1⊥l2,則4x1•x2=-1⇒x1•x2=-
1
4
,∴yM=-
1
4
….(4分)
(2)PQ:y-x12=
x12-x22
x1-x2
(x-x1),即y=(x1+x2)•x+
1
4

∴PQ恒過定點(0,
1
4
)…(8分)
(3)令x1+x2=k,則M(
k
2
,-
1
4
),PQ:y=kx+
1
4

∴M到PQ的距離d=
|
k2
2
+
1
4
+
1
4
|
k2+1
=
1
2
k2+1

又|PQ|=
(x1-x2)2+(x12-x22)2
=
(x1-x2)2+k2(x1-x2)2
=
(x1-x2)2(1+k2)

=
[(x1+x2)2-4x1x2](1+k2)
=1+k2

∴S△PQM=
1
2
|PQ|•d=
1
4
(k2+1)
3
2
1
4
(此時k=0)…..(14分)
點評:本題考查圓錐曲線的綜合,考查了切線的求法,恒過定點的問題,求面積的最值等,解題的關(guān)鍵是理解題意,由圓錐曲線中的相關(guān)計算根據(jù)題設(shè)中的等量關(guān)系建立方程或函數(shù)關(guān)系,本題考查了推理判斷的能力,符號計算的能力,是綜合性較強的題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010•溫州一模)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(I)求t的值;
(II)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省廣州市番禺區(qū)高二下學期期中考試數(shù)學(文) 題型:解答題

(14分)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(1)求t的值;
(2)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省廣州市番禺區(qū)高二下學期期中考試數(shù)學(理) 題型:解答題

(14分)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(1)求t的值;
(2)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省重點中學協(xié)作體高三第三次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

已知P、Q是拋物線C:y=x2上兩動點,直線l1、l2分別是拋物線C在點P、Q處的切線,且l1⊥l2,l1∩l2=M.
(1)求點M的縱坐標;
(2)直線PQ是否經(jīng)過一定點?試證之;
(3)求△PQM的面積的最小值.

查看答案和解析>>

同步練習冊答案