【題目】某班有50名學(xué)生,男女人數(shù)不相等。隨機(jī)詢問了該班5名男生和5名女生的某次數(shù)學(xué)測(cè)試成績(jī),用莖葉圖記錄如下圖所示,則下列說法一定正確的是( )
A. 這5名男生成績(jī)的標(biāo)準(zhǔn)差大于這5名女生成績(jī)的標(biāo)準(zhǔn)差。
B. 這5名男生成績(jī)的中位數(shù)大于這5名女生成績(jī)的中位數(shù)。
C. 該班男生成績(jī)的平均數(shù)大于該班女生成績(jī)的平均數(shù)。
D. 這種抽樣方法是一種分層抽樣。
【答案】A
【解析】
根據(jù)莖葉圖的分別情況分別判斷即可.
5名男生成績(jī)的平均數(shù)為:,
5名女生成績(jī)的平均數(shù)為:,
這5名男生成績(jī)的方差為 ,女生的方差為,男生方差大于女生方差,所以男生標(biāo)準(zhǔn)差大于女生標(biāo)準(zhǔn)差,所以A對(duì);
這5名男生成績(jī)的中位數(shù)是90, 5名女生成績(jī)的中位數(shù)93,所以B錯(cuò);
該班男生和女生成績(jī)的平均數(shù)可通過樣本估計(jì),但不能通過樣本計(jì)算得到平均數(shù)準(zhǔn)確值,所以C錯(cuò);
若抽樣方法是分層抽樣,因?yàn)槟猩坏,所以分別抽取的人數(shù)不等,所以D錯(cuò)。
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義域?yàn)?/span>的偶函數(shù),當(dāng)時(shí),,若關(guān)于的方程,,有且僅有5個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和直線,為曲線上一點(diǎn),為點(diǎn)到直線的距離且滿足.
(1)求曲線的軌跡方程;
(2)過點(diǎn)作曲線的兩條動(dòng)弦,若直線斜率之積為,試問直線是否一定經(jīng)過一定點(diǎn)?若經(jīng)過,求出該定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某漁業(yè)公司今年初用98萬元購(gòu)進(jìn)一艘漁船進(jìn)行捕撈,第一年需要各種費(fèi)用12萬元,從第二年開始包括維修費(fèi)在內(nèi),每年所需費(fèi)用均比上一年增加4萬元,該船每年捕撈的總收入為50萬元.
(1)該船捕撈第幾年開始盈利?
(2)若該船捕撈年后,年平均盈利達(dá)到最大值,該漁業(yè)公司以24萬元的價(jià)格將捕撈船賣出;求并求總的盈利值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),.
(1)求的函數(shù)解析式;
(2)作出的草圖,并求出當(dāng)函數(shù)有個(gè)不同零點(diǎn)時(shí),的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐PABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(1)求證:MN∥平面BDE;
(2)求二面角CEMN的正弦值;
(3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.
【試題解析】
證明:(Ⅰ)取的中點(diǎn)為,連接,,
∵為等邊三角形,∴.
底面中,可得四邊形為矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以為棱錐的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中點(diǎn),連結(jié),則,,
∴ .
所以棱錐的側(cè)面積為.
【題型】解答題
【結(jié)束】
20
【題目】已知圓經(jīng)過橢圓: 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com