定義在[-1,1]上的奇函數(shù)滿足,且當(dāng),時(shí),有
(1)試問(wèn)函數(shù)f(x)的圖象上是否存在兩個(gè)不同的點(diǎn)A,B,使直線AB恰好與y軸垂直,若存在,求出AB兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由并加以證明.
(2)若對(duì)所有,恒成立,
求實(shí)數(shù)m的取值范圍.

(1)根據(jù)函數(shù)單調(diào)性的定義,設(shè)變量作差變形定號(hào)下結(jié)論。
(2)實(shí)數(shù)m的取值范圍是

解析試題分析:解:(1)假設(shè)函數(shù)的圖象上存在兩個(gè)滿足條件的點(diǎn)A,B,則它們的縱坐標(biāo)相同
任取,且, 則

  4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/63/4/buy9j.png" style="vertical-align:middle;" />,
所以,
是[-1,1]上的增函數(shù)  6分
這與假設(shè)矛盾,所以假設(shè)不成立,
∴ 函數(shù)f(x)的圖象上是否存在兩個(gè)不同的點(diǎn)A,B,使直線AB恰好與y軸垂直  8分
(2)要使得對(duì)所有,恒成立,
只須,  11分
由(1)得是[-1,1]上的增函數(shù) ∴
對(duì)任意的恒成立  3分
,則只須,
解之得:   15分
∴實(shí)數(shù)m的取值范圍是.  16分
考點(diǎn):函數(shù)的奇偶性和單調(diào)性
點(diǎn)評(píng):解決的關(guān)鍵是利用單調(diào)性的定義證明,同事利用不等式恒成立來(lái)化簡(jiǎn)為分離參數(shù)的思想來(lái)求解最值得到參數(shù)的范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù) 
(1)畫(huà)出函數(shù)的圖象;
(2)若不等式 恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


已知函數(shù)時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若為定義域上的單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;
(Ⅲ)當(dāng)時(shí),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若是偶函數(shù),在定義域上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),令,問(wèn)是否存在實(shí)數(shù),使上是減函數(shù),在上是增函數(shù)?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實(shí)數(shù)的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)討論的奇偶性;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),(1)分別求;(2)然后歸納猜想一般性結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知,求證:;
(2)已知,>0(i=1,2,3,…,3n),求證:
+++…+

查看答案和解析>>

同步練習(xí)冊(cè)答案