當(dāng)-
π
2
≤x≤
π
2
時,函數(shù)f(x)=sinx+
3
cosx的( 。
A、最大值是1,最小值是-1
B、最大值是1,最小值是-
1
2
C、最大值是2,最小值是-2
D、最大值是2,最小值是-1
分析:首先對三角函數(shù)式變形,提出2變?yōu)榉蟽山呛偷恼夜叫问,根?jù)自變量的范圍求出括號內(nèi)角的范圍,根據(jù)正弦曲線得到函數(shù)的值域.
解答:解:∵f(x)=sinx+
3
cosx
=2(
1
2
sinx+
3
2
cosx)
=2sin(x+
π
3
),
x∈[-
π
2
,
π
2
,
∴f(x)∈[-1,2],
故選D
點評:了解各公式間的內(nèi)在聯(lián)系,熟練地掌握這些公式的正用、逆用以及某些公式變形后的應(yīng)用.掌握兩角和與差的正弦、余弦、正切公式及其推導(dǎo),本題主要是公式的逆用和對三角函數(shù)值域的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的命題是( 。
A、函數(shù)y=
1
tanx
的定義域是{x|x∈R且x≠kπ,k∈Z}
B、當(dāng)-
π
2
≤x≤
π
2
時,函數(shù)y=sinx+
3
cosx
的最小值是-1
C、不存在實數(shù)φ,使得函數(shù)f(x)=sin(x+φ)為偶函數(shù)
D、為了得到函數(shù)y=sin(2x+
π
3
)
,x∈R的圖象,只需把函數(shù)y=sin2x(x∈R)圖象上所有的點向左平行移動
π
3
個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
8x
x2+2
(x>0)
(  )
A、當(dāng)x=2時,取得最小值
8
3
B、當(dāng)x=2時,取得最大值
8
3
C、當(dāng)x=
2
時,取得最小值2
2
D、當(dāng)x=
2
時,取得最大值2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)-2≤x≤2時,函數(shù)y=x2-2x-5的最大值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對任意的實數(shù)x,y∈R,都有f(x+y)=f(x)+f(y),且x<0時,f(x)<0,f(-1)=-2.
(1)求證:f(x)是奇函數(shù);
(2)試問當(dāng)-2≤x≤2時,f(x)是否有最大值或最小值?如果有,求出最值;如果沒有,請說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)-
π
2
≤x≤
π
2
時函數(shù)f(x)=sinx+
3
cosx
的最大值為M,最小值為N,則M-N=
2+
3
2+
3

查看答案和解析>>

同步練習(xí)冊答案