如圖,在長(zhǎng)方體中,、分別是棱,
上的點(diǎn),,
(1) 求異面直線與所成角的余弦值;
(2) 證明平面
(3) 求二面角的正弦值。
【解析】本小題主要考查異面直線所成的角、直線與平面垂直、二面角等基礎(chǔ)知識(shí),考查用空間向量解決立體幾何問(wèn)題的方法,考查空間想象能力、運(yùn)算能力和推理論證能力,滿分12分。
方法一:如圖所示,建立空間直角坐標(biāo)系,
點(diǎn)A為坐標(biāo)原點(diǎn),設(shè),依題意得,
,,
(1) 解:易得,
于是
所以異面直線與所成角的余弦值為
(2) 證明:已知,,
于是·=0,·=0.因此,,,又
所以平面
(3)解:設(shè)平面的法向量,則,即
不妨令X=1,可得。由(2)可知,為平面的一個(gè)法向量。
于是,從而
所以二面角的正弦值為
方法二:(1)解:設(shè)AB=1,可得AD=2,AA1=4,CF=1.CE=
鏈接B1C,BC1,設(shè)B1C與BC1交于點(diǎn)M,易知A1D∥B1C,由,可知EF∥BC1.故是異面直線EF與A1D所成的角,易知BM=CM=,所以 ,所以異面直線FE與A1D所成角的余弦值為
(2)證明:連接AC,設(shè)AC與DE交點(diǎn)N 因?yàn)?sub>,所以,從而,又由于,所以,故AC⊥DE,又因?yàn)镃C1⊥DE且,所以DE⊥平面ACF,從而AF⊥DE.
連接BF,同理可證B1C⊥平面ABF,從而AF⊥B1C,所以AF⊥A1D因?yàn)?sub>,所以AF⊥平面A1ED
(3)解:連接A1N.FN,由(2)可知DE⊥平面ACF,又NF平面ACF, A1N平面ACF,所以DE⊥NF,DE⊥A1N,故為二面角A1-ED-F的平面角
易知,所以,又所以,在
連接A1C1,A1F 在
。所以
所以二面角A1-DE-F正弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年惠州一中四模理) 如圖,在長(zhǎng)方體中,,點(diǎn)E在棱上移動(dòng)。
(Ⅰ)證明:;
(Ⅱ)當(dāng)E為的中點(diǎn)時(shí),求點(diǎn)E到面的距離;
(Ⅲ)等于何值時(shí),二面角 的大小為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)如圖,在長(zhǎng)方體中,,,點(diǎn)在棱上移動(dòng)。
(1)證明:;
(2)等于何值時(shí),二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,
且.
(Ⅰ) 求證://平面 ;(Ⅱ) 求證:平面平面;
(Ⅲ)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆黑龍江省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在長(zhǎng)方體中,,則與平面所成角的正弦值為 ( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com