【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.
(1)證明:Q為BB1的中點(diǎn);
(2)求此四棱柱被平面α所分成上下兩部分的體積之比;
(3)若AA1=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角的大。
【答案】
(1)證明:∵四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為梯形,AD∥BC,
∴平面QBC∥平面A1D1DA,
∴平面A1CD與面QBC、平面A1D1DA的交線平行,∴QC∥A1D
∴△QBC∽△A1AD,
∴ = ,
∴Q為BB1的中點(diǎn);
(2)解:連接QA,QD,設(shè)AA1=h,梯形ABCD的高為d,四棱柱被平面α所分成上、下兩部分的體積為V1,V2,
設(shè)BC=a,則AD=2a,∴ = = ,VQ﹣ABCD= = ahd,
∴V2= ,
∵V棱柱= ahd,
∴V1= ahd,
∴四棱柱被平面α所分成上、下兩部分的體積之比 ;
(3)解:在△ADC中,作AE⊥DC,垂足為E,連接A1E,則DE⊥平面AEA1,∴DE⊥A1E,
∴∠AEA1為平面α與底面ABCD所成二面角的平面角,
∵BC∥AD,AD=2BC,
∴S△ADC=2S△ABC,
∵梯形ABCD的面積為6,DC=2,
∴S△ADC=4,AE=4,
∴tan∠AEA1= =1,
∴∠AEA1= ,
∴平面α與底面ABCD所成二面角的大小為 .
【解析】(1)證明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可證明Q為BB1的中點(diǎn);(2)設(shè)BC=a,則AD=2a,則 = = ,VQ﹣ABCD= = ahd,利用V棱柱= ahd,即可求出此四棱柱被平面α所分成上、下兩部分的體積之比;(3)△ADC中,作AE⊥DC,垂足為E,連接A1E,則DE⊥平面AEA1 , DE⊥A1E,可得∠AEA1為平面α與底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan∠AEA1= =1,即可求平面α與底面ABCD所成二面角的大。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計(jì),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 總計(jì) | |
男性市民 | |||
女性市民 | |||
總計(jì) |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān)?請說明理由.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,,記,,.
(1)當(dāng)時(shí),求原點(diǎn)關(guān)于直線的對稱點(diǎn)坐標(biāo);
(2)在中,求邊上中線長的最小值;
(3)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時(shí),求f(x)取得最大值和最小值時(shí)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線是一條居民平時(shí)散步的小道,小道兩旁是空地,當(dāng)?shù)卣疄榱素S富居民的業(yè)余生活,要在小道兩旁規(guī)劃出兩地來修建休閑活動場所,已知空地和規(guī)劃的兩塊用地(陰影區(qū)域)都是矩形,,,,若以所在直線為軸,為原點(diǎn),建立如圖平面直角坐標(biāo)系,則曲線的方程為,記,規(guī)劃的兩塊用地的面積之和為.(單位:)
(1)求關(guān)于的函數(shù);
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于O、A、B三點(diǎn),O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,△AOB的面積為 ,則p=( )
A.1
B.
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com