已知p:關(guān)于x的方程4x2+4(m-2)x+1=0無實(shí)根,q:關(guān)于x的方程x2+mx+1=0的兩實(shí)根都小于1,若p∧q是真命題,且¬(p∨q)是假命題,求實(shí)數(shù)m的取值范圍.
【答案】分析:根據(jù)二次方程根與判別式的關(guān)系,可求出p為真時(shí)m的取值范圍,根據(jù)二次方程根與系數(shù)的關(guān)系,可求出q為真時(shí)m的取值范圍,結(jié)合p∧q是真命題,且¬(p∨q)是假命題,可得實(shí)數(shù)m的取值范圍
解答:解:∵¬(p∨q)是假命題,
∴p∨q是真命題.
∵方程4x2+4(m-2)x+1=0無實(shí)根,
∴△=16(m-2)2-4×4<0,
∴1<m<3,
∴p為真命題時(shí),實(shí)數(shù)m的取值范圍為A={m|1<m<3}.
構(gòu)造函數(shù)f(x)=x2+mx+1.
∵方程x2+mx+1=0有兩個(gè)小于1的實(shí)根,
,
解得:m≥2;
∴q為真命題時(shí),實(shí)數(shù)m的取值范圍為B={m|m≥2},
∴p∧q是真命題時(shí),實(shí)數(shù)m的取值范圍是:
M=A∩B={m|1<m<3}∩{m|m≥2}={m|2≤m<3};
p∨q是真命題時(shí),實(shí)數(shù)m的取值范圍是:
N=A∪B={m|1<m<3}∪{m|m≥2}={m|m>1},
∴p∨q是真命題,即¬(p∨q)是假命題時(shí),實(shí)數(shù)m的取值范圍是:
M∩N={m|2≤m<3}∩{m|m>1}={m|2≤m<3},
綜上所述,實(shí)數(shù)m的取值范圍是[2,3).
點(diǎn)評(píng):本題以命題的真假判斷為載體考查了方程根的個(gè)數(shù)與判別式的關(guān)系及根與系數(shù)的關(guān)系,熟練掌握二次方程的相關(guān)知識(shí)點(diǎn)是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的方程2x+m-1=0有實(shí)數(shù)解;q:函數(shù)f(x)=|x-m|+1在(-∞,2)上為減函數(shù).若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的方程x2+mx+1=0有兩個(gè)不相等的負(fù)數(shù)根q:關(guān)于x的方程4x2+4(m-2)x+1=0無實(shí)根;如果復(fù)合命題“p或q”為真,“p且q”為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的方程x2+2x+m-1=0沒有實(shí)根,q:不等式4x2+4(m-2)x+1>0的解集為R,
(1)若¬q為假命題,求m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的方程4x2+4(m-2)x+1=0無實(shí)根,q:關(guān)于x的方程x2+mx+1=0的兩實(shí)根都小于1,若p∧q是真命題,且¬(p∨q)是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知p:關(guān)于x的方程ax2+2x+1=0至少有一個(gè)負(fù)實(shí)根,q:a≤1,則q是p的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案