設(shè)a>b>0,則a2+
1
ab
+
1
a(a-b)
的最小值是______.
a2+
1
ab
+
1
a(a-b)
=a2-ab+ab+
1
ab
+
1
a(a-b)
=ab+
1
ab
+a(a-b)+
1
a(a-b)
≥2+2=4,
當(dāng)且僅當(dāng)ab=1,a(a-b)=1即a=
2
,b=
2
2
時(shí)等號(hào)成立,
故答案為4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>b>0,則a2+
1
ab
+
1
a(a-b)
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>b>0,則a2+
1
ab
+
1
a(a-b)
的最小值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:甘肅省廣河二中2010-2011學(xué)年高二上學(xué)期期中考試數(shù)學(xué)試題 題型:013

設(shè)a>b>0,則a2的最小值是

[  ]
A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川 題型:單選題

設(shè)a>b>0,則a2+
1
ab
+
1
a(a-b)
的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案