已知雙曲線-=1(b∈N*)的左、右兩個焦點為F1、F2,P是雙曲線上的一點,且滿足|PF1||PF2|=|F1F2|2,|PF2|<4.
(1)求b的值;
(2)拋物線y2=2px(p>0)的焦點與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過右頂點,與該拋物線交于A、B兩點,求弦長|AB|.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.
(1)求橢圓C的標準方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,動點到兩定點、構(gòu)成,且,設(shè)動點的軌跡為。
(1)求軌跡的方程;
(2)設(shè)直線與軸交于點,與軌跡相交于點,且,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點,若A是PB的中點,求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線E:y2=4x的焦點為F,準線l與x軸的交點為A.點C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準線l交于不同的兩點M,N.
(1)若點C的縱坐標為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓+=1(a>b>0),點P(a,a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點,O為坐標原點,若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我們把離心率為e=的雙曲線(a>0,b>0)稱為黃金雙曲線.如圖,是雙曲線的實軸頂點,是虛軸的頂點,是左右焦點,在雙曲線上且過右焦點,并且軸,給出以下幾個說法:
①雙曲線x2-=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是( )
A.①②④ | B.①②③ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為和,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的三個頂點都在拋物線上,且拋物線的焦點滿足,若邊上的中線所在直線的方程為(為常數(shù)且).
(1)求的值;
(2)為拋物線的頂點,,,的面積分別記為,,,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com