精英家教網 > 高中數學 > 題目詳情
(2011•沈陽二模)如圖,△ABC中,sin
∠ABC
2
=
3
3
,AB=2,點D在線段AC上,且AD=2DC,BD=
4
3
3
.(Ⅰ)求:BC的長;(Ⅱ)求△DBC的面積.
分析:(Ⅰ)由sin
∠ABC
2
的值,利用二倍角的余弦函數公式即可求出cos∠ABC的值,設BC=a,AC=3b,由AD=2DC得到AD=2b,DC=b,在三角形ABC中,利用余弦定理得到關于a與b的關系式,記作①,在三角形ABD和三角形DBC中,利用余弦定理分別表示出cos∠ADB和cos∠BDC,由于兩角互補,得到cos∠ADB等于-cos∠BDC,兩個關系式互為相反數,得到a與b的另一個關系式,記作②,①②聯(lián)立即可求出a與b的值,即可得到BC的值;
(Ⅱ)由角ABC的范圍和cos∠ABC的值,利用同角三角函數間的基本關系求出sin∠ABC的值,由AB和BC的值,利用三角形的面積公式即可求出三角形ABC的面積,由AD=2DC,且三角形ABD和三角形BDC的高相等,得到三角形BDC的面積等于三角形ABC面積的
1
3
,進而求出三角形BDC的面積.
解答:解:(Ⅰ)因為sin
∠ABC
2
=
3
3
,所以cos∠ABC=1-2sin2
∠ABC
2
=1-2×
1
3
=
1
3
.(2分)
在△ABC中,設BC=a,AC=3b,
由余弦定理可得:9b2=a2+4-
4
3
a
①(5分)
在△ABD和△DBC中,由余弦定理可得:
cos∠ADB=
4b2+
16
3
-4
16
3
3
b
,cos∠BDC=
b2+
16
3
-a2
8
3
3
b
.(7分)
因為cos∠ADB=-cos∠BDC,所以有
4b2+
16
3
-4
16
3
3
b
=-
b2+
16
3
-a2
8
3
3
b
,所以3b2-a2=-6 ②
由①②可得a=3,b=1,即BC=3.(9分)
(Ⅱ)由(Ⅰ)知cos∠ABC=
1
3
,則sin∠ABC=
1-(
1
3
)
2
=
2
2
3
,又AB=2,BC=3,
則△ABC的面積為
1
2
AB•BCsin∠ABC=
1
2
×2×3×
2
2
3
=2
2
,
又因為AD=2DC,所以△DBC的面積為
1
3
×2
2
=
2
2
3
.(12分)
點評:此題考查學生靈活運用同角三角函數間的基本關系及余弦定理化簡求值,靈活運用三角形的面積公式化簡求值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•沈陽二模)已知復數z1=cos23°+isin23°和復數z2=cos37°+isin37°,則z1•z2為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•沈陽二模)已知圖象不間斷的函數f(x)是區(qū)間[a,b]上的單調函數,且在區(qū)間(a,b)上存在零點.如圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內可以填寫的內容有如下四個選擇:
①f(a)f(m)<0;②f(a)f(m)>0;
③f(b)f(m)<0;④f(b)f(m)>0
其中能夠正確求出近似解的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•沈陽二模)已知O為坐標原點,點M的坐標為(a,1)(a>0),點N(x,y)的坐標x、y滿足不等式組
x+2y-3≤0
x+3y-3≥0
y≤1
.若當且僅當
x=3
y=0
時,
OM
ON
取得最大值,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•沈陽二模)等差數列{an}的首項為a1,公差為d,前n項和為Sn.則“d>|a1|”是“Sn的最小值為s1,且Sn無最大值”的(  )

查看答案和解析>>

同步練習冊答案