【題目】(2015·四川)在三棱住ABCA1B1C1中,∠BAC=90°,其正視圖和側(cè)視圖都是邊長為1的正方形,俯視圖是直角邊長為1的等腰直角三角形,設(shè)點M , N , P分別是ABBC , B1C1的中點,則三棱錐PA1MN的體積是 。

【答案】
【解析】由題意,三棱柱是底面為直角邊長為1的等腰直角三角形,高為1的直三棱柱,底面積為, 如圖,因為AA1//PN .故AA1//面PMN, 故三棱錐P-A1MN與三棱錐P-AMN體積相等,三棱錐P-AMN的底面積是三棱錐底面積的,高為1, 故三棱錐P-A1MN的體積為xx=.
【考點精析】掌握由三視圖求面積、體積是解答本題的根本,需要知道求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個側(cè)面的面積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個實數(shù)根,則實數(shù)ω的取值范圍為(
A.( , ]
B.( ]
C.( , ]
D.( ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,D是BC上的點,AD平分BAC,ABD面積是ADC面積的2倍
(1)(I)求
(2)(II)若AD=1,DC=,求BD和AC的長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·新課標I卷)選修4-1:幾何證明選講
如圖AB是⊙O直徑,AC是⊙O切線,BC交⊙O與點E.

(1)若DAC中點,求證:DE是⊙O切線;
(2)若OA=CE,求∠ACB的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱臺上、下底面分別是邊長為3和6的正方形,,且
底面,點,分別在棱,上.
(1)若是的中點,證明:;
(2若//平面,二面角的余弦值為,求四面體的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·四川)已知A、B、C為△ABC的內(nèi)角,tanA、tanB是關(guān)于方程x2pxp+1=0(pR)兩個實根.
(1)求C的大小
(2)若AB=1,AC,求p的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·四川)設(shè)數(shù)列{an}的前n項和Sn=2an-a1 , 且a1, a2+1, a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{}的前n項和Tn , 求得|Tn-1|<成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·陜西)設(shè)fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內(nèi)有且僅有一個零點(記為an), 且0<an-<()n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)當時,解不等式;

(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

同步練習冊答案