【題目】已知函數(shù),(為實(shí)數(shù)).
(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;
(2)求在區(qū)間上的最小值;
(3)若存在兩個(gè)不等實(shí)數(shù),使方程成立,求實(shí)數(shù)的取值范圍.
【答案】(1).
(2) 當(dāng)時(shí), ;當(dāng)時(shí),
(3).
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義得到,,所以切線方程為,即;(2)當(dāng)時(shí),為增函數(shù)可得到函數(shù)最值,當(dāng)時(shí),在區(qū)間內(nèi),為減函數(shù),在區(qū)間上,為增函數(shù),進(jìn)而得到最值;(3)原式子等價(jià)于,令,研究函數(shù)的單調(diào)性得到函數(shù)的圖像進(jìn)而得到零點(diǎn)情況.
詳解:
(1)當(dāng)時(shí),,,,故切線的斜率為,
所以切線方程為,即.
(2)∵,
- | + | ||
單調(diào)遞減 | 極小值(最小值) | 單調(diào)遞增 |
當(dāng)時(shí),在區(qū)間上,為增函數(shù),所以,當(dāng)時(shí),在區(qū)間內(nèi),為減函數(shù),在區(qū)間上,為增函數(shù),所以.
(3)由,可得,則,令,
則.
- | + | ||
單調(diào)遞減 | 極小值(最小值) | 單調(diào)遞增 |
因?yàn)?/span>,,,所以,
∴,所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),試判斷函數(shù)的單調(diào)性;
(2)若,求證:函數(shù)在上的最小值小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售甲乙兩種商品所得利潤(rùn)分別是(單位:萬元)和(單位:萬元),它們與投入資金(單位:萬元)的關(guān)系有經(jīng)驗(yàn)公式,.今將10萬元資金投入經(jīng)營(yíng)甲乙兩種商品,其中對(duì)甲種商品投資(單位:萬元).
(1)試建立總利潤(rùn)(單位:萬元)關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(2)如何投資經(jīng)營(yíng)甲乙兩種商品,才能使得總利潤(rùn)最大,并求出最大總利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測(cè)數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得: , , , ,
,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為
=;相關(guān)指數(shù)R2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量(單位:瓶)為多少時(shí),的數(shù)學(xué)期望達(dá)到最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①若樣本數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為;
②“平面向量的夾角為銳角,則”的逆命題為真命題;
③命題“,均有”的否定是“,均有”;
④是直線與直線平行的必要不充分條件.
其中正確的命題個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com