若函數(shù)f(x)=(x2+ax+a)ex(a≤2,x∈R)的極大值為3,求a的值.
分析:由f(x)=(x2+ax+a)ex(x∈R),知f′(x)=[x2+(2+a)x+2a]ex,令f′(x)=0,解得x1=-a或x2=-2,由a≤2,且f(x)的極大值為3,能求出實(shí)數(shù)a的值.
解答:解:由于f′(x)=(2x+a)ex+(x2+ax+a)ex
=[x2+(2+a)x+2a]ex
=(x+a)(x+2)ex
令f′(x)=0,解得 x=-a或x=-2,
又∵a≤2,∴-a≥-2.
當(dāng)x變化時(shí),f′(x),f(x)的變化如下表所示:
x (-∞,-2) -2 (-2,-a) -a (-a,+∞)
f′(x) + 0 - 0 +
f(x) 遞增 極大值 遞減 極小值 遞增
由表可知,當(dāng)x=-2時(shí),函數(shù)f(x)取得極大值3,即f(-2)=[(-2)2-2a+a]e-2=3,解得a=4-3e2
故若函數(shù)f(x)=(x2+ax+a)ex(a≤2,x∈R)的極大值為3,則a的值為4-3e2
點(diǎn)評(píng):本題考查利用函數(shù)的極大值求參數(shù)問題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意分類討論思想和等價(jià)轉(zhuǎn)化思想及導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù) fx)=a x (a>0,a≠1 ) 的部分對(duì)應(yīng)值如表:

x

-2

0

fx

0.592

1

則不等  式f-1(│x│<0)的解集是        ()

A. {x│-1<x<1}                  B. {xx<-1或x>1}         

C. {x│0<x<1}                    D. {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若函數(shù)f(x)對(duì)于任意x∈[a,b],恒有|f(x)-f(a)-數(shù)學(xué)公式(x-a)|≤T(T為常數(shù))成立,則稱函數(shù)f(x)在[a,b]上具有“T級(jí)線性逼近”.下列函數(shù)中:
①f(x)=2x+1;
②f(x)=x2;
③f(x)=數(shù)學(xué)公式;
④f(x)=x3
則在區(qū)間[1,2]上具有“數(shù)學(xué)公式級(jí)線性逼近”的函數(shù)的個(gè)數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年福建省寧德市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若函數(shù)f(x)對(duì)于任意x∈[a,b],恒有|f(x)-f(a)-(x-a)|≤T(T為常數(shù))成立,則稱函數(shù)f(x)在[a,b]上具有“T級(jí)線性逼近”.下列函數(shù)中:
①f(x)=2x+1;
②f(x)=x2;
③f(x)=
④f(x)=x3
則在區(qū)間[1,2]上具有“級(jí)線性逼近”的函數(shù)的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案