已知點(diǎn)A(cosθ,sinθ) (0≤θ≤π)在曲線
3
xy-y2=
1
2
,則θ的值為
 
分析:點(diǎn)A(cosθ,sinθ)代入曲線方程,使用三角公式變形,求得關(guān)于某個(gè)角的三角函數(shù)值,據(jù)0≤θ≤π,求出這個(gè)角,進(jìn)而求出θ值.
解答:解:由曲線方程得:
3
cosθsinθ=
1
2
+(sinθ)2,即:
3
2
sin2θ=
1
2
+
1-cos2θ
2
,
即:
3
2
sin2θ+
1
2
cos2θ=1,sin(2θ+
π
6
)=1,
π
6
≤2θ+
π
6
≤2π+
π
6
,
∴2θ+
π
6
=
π
2
,
∴θ=
π
6
點(diǎn)評(píng):本題屬于根據(jù)三角函數(shù)值求角問(wèn)題,注意靈活使用三角公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(cosα,sinα),點(diǎn)B(cos(α+
π
3
),sin(α+
π
3
)),點(diǎn)C(1,0).
(Ⅰ)若|CA|=
3
,求α的值;
(Ⅱ)若α∈(
π
6
,
π
2
),求
CA
CB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(λcosα,λsinα)(λ≠0),B(
1
2
,-
3
2
)
,O為坐標(biāo)原點(diǎn),
(1)若α=
π
6
時(shí),不等式|
AB
|≥2|
OB
|
有解,求實(shí)數(shù)λ的取值范圍;
(2)若|
AB
|≥2|
OB
|
對(duì)任意實(shí)數(shù)α恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省溫州市甌海中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點(diǎn)A(cosα,sinα),點(diǎn)B(cos(α+),sin(α+)),點(diǎn)C(1,0).
(Ⅰ)若|CA|=,求α的值;
(Ⅱ)若α∈(),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:閔行區(qū)二模 題型:解答題

已知點(diǎn)A(λcosα,λsinα)(λ≠0),B(
1
2
,-
3
2
)
,O為坐標(biāo)原點(diǎn),
(1)若α=
π
6
時(shí),不等式|
AB
|≥2|
OB
|
有解,求實(shí)數(shù)λ的取值范圍;
(2)若|
AB
|≥2|
OB
|
對(duì)任意實(shí)數(shù)α恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案