如圖,△ABC與△ACD都是等腰直角三角形,且AD=DC=2,AC=BC,平面DAC⊥平面ABC,如果以ABC平面為水平平面,正視圖的觀察方向與AB垂直,則三棱錐D-ABC左視圖的面積為   
【答案】分析:幾何體的左視圖是一個(gè)三角形,三角形的一條邊長(zhǎng)是DC,過(guò)C向AB做垂線,連接D與垂足F,這個(gè)三角形底邊CF長(zhǎng)度就是左視圖三角形的底邊長(zhǎng)度,左視圖的高即棱錐頂點(diǎn)D到底面的距離,根據(jù)條件中數(shù)據(jù)做出面積.
解答:解:由題意知幾何體的左視圖是一個(gè)三角形,
三角形的一條邊長(zhǎng)是DC,
過(guò)C向AB做垂線,垂足為F,連接D與垂足F,
這個(gè)三角形的投影就是左視圖,左視圖三角形,
由圖形及勾股定理可知CF的長(zhǎng)度為1,即左視圖底邊長(zhǎng)為1,D到底面的距離是,故左視圖的高是,
∴三角形的面積是,
故答案為:
點(diǎn)評(píng):本題考查簡(jiǎn)單空間圖形的三視圖,考查根據(jù)幾何圖形得到三視圖,并且求出三視圖的面積,本題是一個(gè)基礎(chǔ)題,運(yùn)算量不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2
3
sin(ωx+
π
3
)
(ω>0)部分圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.則ω=
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南京模擬)A.選修4-1幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
求證:ED2=EB•EC.
B.矩陣與變換
已知矩陣A=
2-1
-43
4-1
-31
,求滿足AX=B的二階矩陣X.
C.選修4-4 參數(shù)方程與極坐標(biāo)
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π
3
),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
D.選修4-5 不等式證明選講設(shè)a,b,c為正實(shí)數(shù),求證:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:揚(yáng)州大學(xué)附屬中學(xué)高一上學(xué)期期末測(cè)試卷高一數(shù)學(xué)[上學(xué)期] 題型:044

如圖,△ABC與△BCD是一副三角板,它們所在的兩個(gè)平面互相垂直.若AB=AC,∠BAC=∠BCD=90°,∠CBD=30°.

(Ⅰ)求證:三棱錐A-BCD的四個(gè)面都是直角三角形;

(Ⅱ)求二面角A-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省金堂中學(xué)2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)試題 題型:044

如圖,△ABC與△DBC均是邊長(zhǎng)為2的等邊三角形,且它們所在平面互相垂直,EA⊥平面ABC,EA=

(1)求證:DE|平面ABC

(2)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在△ABC中,D是上一點(diǎn),=,設(shè)=a,=b,試用a、b表示.

(2)設(shè)DEF三等分△ABC所在各邊,即BC=3BD,CA=3CE,AB=3AF(如圖).

求證:△ABC與△DEF有相同的重心.

查看答案和解析>>

同步練習(xí)冊(cè)答案