精英家教網 > 高中數學 > 題目詳情

【題目】已知二次函數f(x)對任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函數f(x)的解析式;
(2)設函數g(x)=f(x)+m,(m∈R). ①若存在實數a,b(a<b),使得g(x)在區(qū)間[a,b]上為單調函數,且g(x)取值范圍也為[a,b],求m的取值范圍;
②若函數g(x)的零點都是函數h(x)=f(f(x))+m的零點,求h(x)的所有零點.

【答案】
(1)解:設二次函數f(x)的解析式為f(x)=ax2+bx+c,

則f(x+2)﹣f(x)=a(x+2)2+b(x+2)+c﹣(ax2+bx+c)=4ax+4a+2b

由f(x+2)﹣f(x)=﹣4x+4得(4a+4)x+4a+2b﹣4=0恒成立,又f(0)=0

所以 ,所以 ,所以f(x)=﹣x2+4x


(2)解:g(x)=﹣x2+4x+m,對稱軸x=2,g(x)在區(qū)間[a,b]上單調,所以b≤2或a≥2

①1°當b≤2時,g(x)在區(qū)間[a,b]上單調增,所以 ,即a,b為g(x)=x的兩個根,

所以只要g(x)=x有小于等于2兩個不相等的實根即可,

所以x2﹣3x﹣m=0要滿足 ,得

2°當a≥2時,g(x)在區(qū)間[a,b]上單調減,所以 ,即

兩式相減得(b﹣a)(a+b﹣5)=0,因為b>a,所以a+b﹣5=0,

所以m=a2﹣5a+5, ,得

綜上,m的取值范圍為

②(法一)設x0為g(x)的零點,則 ,即 ,

即﹣m2﹣4m+m=0,得m=0或m=﹣3

1°當m=0時,h(x)=﹣(﹣x2+4x)2+4(﹣x2+4x)=﹣x(x﹣4)(x2﹣4x+4)

所以h(x)所有零點為0,2,4

2°當m=﹣3時,h(x)=﹣(﹣x2+4x)2+4(﹣x2+4x)﹣3=﹣(﹣x2+4x﹣3)(﹣x2+4x﹣1)

(因為必有因式﹣x2+4x﹣3,所以容易分解因式)

由﹣x2+4x﹣3=0和﹣x2+4x﹣1=0得

所以h(x)所有零點為

(法二)函數g(x)的零點都是函數h(x)的零點,

所以﹣(﹣x2+4x)2+4(﹣x2+4x)+m中必有因式﹣x2+4x+m,

所以可設:﹣(﹣x2+4x)2+4(﹣x2+4x)+m=﹣(﹣x2+4x+m)(﹣x2+sx+t)

展開對應系數相等得 (下同法一).


【解析】(1)設二次函數f(x)的解析式為f(x)=ax2+bx+c,利用待定系數法求解即可.(2)g(x)=﹣x2+4x+m,對稱軸x=2,g(x)在區(qū)間[a,b]上單調,b≤2或a≥2,①1°當b≤2時,2°當a≥2時,列出不等式組,求解m的取值范圍為 ;②(法一)設x0為g(x)的零點,則 ,求出m=0或m=﹣3,1°當m=0時,求出h(x)所有零點為0,2,4;2°當m=﹣3時,求出h(x)所有零點為 ;

(法二)函數g(x)的零點都是函數h(x)的零點,﹣(﹣x2+4x)2+4(﹣x2+4x)+m=﹣(﹣x2+4x+m)(﹣x2+sx+t),展開對應系數相等求解即可.

【考點精析】認真審題,首先需要了解二次函數的性質(增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知{an}是各項均為正數的等比數列,{bn}是等差數列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通項公式;
(2)設cn=anbn , n∈N* , 求數列{cn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓x2+y2+x﹣6y+m=0和直線x+2y﹣3=0交于P、Q兩點,
(1)求實數m的取值范圍;
(2)求以PQ為直徑且過坐標原點的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=cos( x+ )的圖象向右平移φ(φ>0)個單位,所得函數圖象關于y軸對稱,則φ的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某流程圖如圖所示,現輸入如下四個函數,則可以輸出的函數是(

A.f(x)=
B.f(x)=ln( ﹣x)
C.f(x)=
D.f(x)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( )單調,則ω的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ABCD中邊長為1,P、Q分別為BC、CD上的點,△CPQ周長為2.
(1)求PQ的最小值;
(2)試探究求∠PAQ是否為定值,若是給出證明;不是說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側棱垂直于底面,底面是邊長為2的正三角形,側棱長為3,則BB1與平面AB1C1所成的角是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓 + =1(a>b>0)的左、右焦點分別為F1、F2 , P是橢圓上一點,|PF1|=λ|PF2|( ≤λ≤2),∠F1PF2= ,則橢圓離心率的取值范圍為(
A.(0, ]
B.[ , ]
C.[ , ]
D.[ ,1)

查看答案和解析>>

同步練習冊答案