【題目】已知橢圓C: 過點(diǎn)A(2,3),且F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在于行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于 ?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

【答案】
(1)解:∵橢圓C: 過點(diǎn)A(2,3),且F(2,0)為其右焦點(diǎn),

∴橢圓C的左焦點(diǎn)為F′(﹣2,0),則|AF|=3,|AF′|= =5,

,即 ,∴b2=16﹣4=12,

∴橢圓C的方程為 =1.


(2)解:設(shè)存在符合題意的直線l,其方程為y= ,

,整理,得3x2+3tx+t2﹣12=0,

∵直線l與橢圓C有公共點(diǎn),

∴△=(3t)2﹣12(t2﹣12)=﹣3t2+144≥0,

解得﹣4 ,

∵直線OA與l的距離等于 ,∴ = ,故t=±5.

∵±5∈[﹣4 ,4 ],

∴直線l的方程為y= 或y=


【解析】(1)利用橢圓焦點(diǎn)和橢圓定義,求出a,b,由此能求出橢圓C的方程.(2)設(shè)存在符合題意的直線l,其方程為y= ,與橢圓聯(lián)立,得3x2+3tx+t2﹣12=0,由此利用根的判別式、點(diǎn)到直線的距離公式,能求出結(jié)果方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一名心率過速患者服用某種藥物后心率立刻明顯減慢,之后隨著藥力的減退,心率再次慢慢升高,則自服藥那一刻起,心率關(guān)于時(shí)間的一個(gè)可能的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域既是奇函數(shù)又是減函數(shù)的是(
A.y=|x|
B.y=﹣x3
C.y=( x
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=ax上一點(diǎn)M(4,b)到焦點(diǎn)的距離為6.
(1)求拋物線的方程;
(2)若此拋物線與直線y=kx﹣2交于不同的兩點(diǎn)A、B,且AB中點(diǎn)的橫坐標(biāo)為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn),且PA=AD.

(1)求證:PB∥平面AEC;
(2)求證:AE⊥平面PCD;
(3)設(shè)二面角D﹣AE﹣C為60°,且AP=1,求D到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn)
(1)求證:DE∥平面ABC;
(2)求三棱錐E﹣BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=b+logax的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S﹣ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分別交AC、SC于D、E,又SA=AB,SB=BC,

(1)求證:BD⊥平面SAC;
(2)求二面角E﹣BD﹣C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案