【題目】如圖,在四棱錐中,底面是正方形,分別為的中點,惻面底面,且.

(1)求證:平面;;

(2)求證:平面平面;

(3)求.

【答案】(1)見解析;(2)見解析.(3) .

【解析】

試題分析:

(1)連接,利用幾何關系可證得,利用線面平行的判斷定理可得平面.

(2)利用面面垂直的判斷定理可得.結合可證得平面,利用面面垂直的判斷定理即可證得平面平面.

(3)由題意結合幾何體的性質(zhì)轉(zhuǎn)化頂點可得,則.

試題解析:

(1)連接,的中點,

的中點,∴在,,

又∵平面,平面,平面.

(2)∵平面平面,平面平面,,

平面,.

,

是等腰直角三角形,且,,

,平面,

平面,∴平面平面.

(3)因為平面平面ABCD,平面平面,

,所以平面PAD,,

因為

所以,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,,具有性質(zhì);對任意,,兩數(shù)中至少有一個是該數(shù)列中的一項,給出下列三個結論:

①數(shù)列,,具有性質(zhì)

②若數(shù)列具有性質(zhì),則;

③若數(shù)列,具有性質(zhì),則

其中,正確結論的個數(shù)是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù).)

(1)討論函數(shù)的單調(diào)性;

(2)當函數(shù)有兩個零點, 時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位編著. 《算法統(tǒng)宗》對我國民間普及珠算和數(shù)學知識起到了很大的作用,是東方古代數(shù)學的名著.在這部著作中,許多數(shù)學問題都是以歌訣形式呈現(xiàn)的,以“竹筒容米”就是其中一首:家有九節(jié)竹一莖,為因盛米不均平;下頭三節(jié)三升九,上梢四節(jié)貯三升;唯有中間二節(jié)竹,要將米數(shù)次第盛;若是先生能算法,也教算得到天明!大意是:用一根9節(jié)長的竹子盛米,每節(jié)竹筒盛米的容積是不均勻的.下端3節(jié)可盛米3.9升,上端4節(jié)可盛米3升,要按每節(jié)依次盛容積相差同一數(shù)量的方式盛米,中間兩節(jié)可盛米多少升?由以上條件,計算出中間兩節(jié)的容積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設該市有萬居民,估計全市居民中月均用水量不低于噸的人數(shù).說明理由;

(3)估計居民月均用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 平面為等邊三角形, 上的點,且.

(1)求和平面所成角的正弦值;

(2)線段上是否存在點,使平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題,其中正確的是( )

A. 由獨立性檢驗可知,有 99%的把握認為物理成績與數(shù)學成績有關,某人數(shù)學成績優(yōu)秀,則他有 99%的可能物理優(yōu)秀;

B. 兩個隨機變量相關系越強,則相關系數(shù)的絕對值越接近于 0;

C. 在線性回歸方程中,當變量 每增加一十單位時,變量 平均增加 0.2 個單位;

D. 線性回歸方程對應的直線至少經(jīng)過其樣本數(shù)據(jù)點中的一個點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側面為正三角形,且平面 平面, 中點, .

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=x2lnx,g(x)=ax3﹣x2
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求實數(shù)a的取值范圍;
(3)若使方程f(x)﹣g(x)=0在x∈[ ,en](其中e=2.7…為自然對數(shù)的底數(shù))上有解的最小a的值為an , 數(shù)列{an}的前n項和為Sn , 求證:Sn<3.

查看答案和解析>>

同步練習冊答案