(本小題滿分12)
為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域內(nèi)修建一個(gè)矩形的草坪,并建立如圖平面直角坐標(biāo)系,且,,另外的內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測(cè)量,, ,.
(1)求直線的方程;
(2)應(yīng)如何設(shè)計(jì)才能使草坪的占地面積最大?并求最大面積。

(1) (2)時(shí),最大,其最大值為

解析試題分析:(1)如圖,在線段上任取一點(diǎn),分別向作垂線,
由題意,直線的方程為:.………………………………4分
(2)設(shè),則長(zhǎng)方體的面積,
化簡(jiǎn)后得
易得時(shí),最大,其最大值為.                                 ……12分
考點(diǎn):本小題主要考查直角坐標(biāo)系的建立、直線方程的求法和用二次函數(shù)知識(shí)解決實(shí)際問(wèn)題中的最值問(wèn)題,考查學(xué)生由實(shí)際問(wèn)題向數(shù)學(xué)問(wèn)題轉(zhuǎn)化的能力和運(yùn)算求解能力.
點(diǎn)評(píng):解決實(shí)際問(wèn)題,關(guān)鍵是從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型,再用數(shù)學(xué)知識(shí)解決,另外求解實(shí)際問(wèn)題時(shí),不要忘記實(shí)際問(wèn)題滿足的定義域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)當(dāng)b=0時(shí),若對(duì)x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求實(shí)數(shù)k的取值范圍;
(2)設(shè)h(x)的圖象為函數(shù)f (x)和g(x)圖象的公共切線,切點(diǎn)分別為(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求證:x1>1>x2;
②若當(dāng)x≥x1時(shí),關(guān)于x的不等式ax2-x+xe+1≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù),在同一周期內(nèi),
當(dāng)時(shí),取得最大值;當(dāng)時(shí),取得最小值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若時(shí),函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)是奇函數(shù):
(1)求實(shí)數(shù)的值; 
(2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)為常數(shù))。
(Ⅰ)函數(shù)的圖象在點(diǎn)()處的切線與函數(shù)的圖象相切,求實(shí)數(shù)的值;
(Ⅱ)設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,對(duì)于區(qū)間[1,2]內(nèi)的任意兩個(gè)不相等的實(shí)數(shù),都有
成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義:若函數(shù)對(duì)于其定義域內(nèi)的某一數(shù),有,則稱的一個(gè)不動(dòng)點(diǎn). 已知函數(shù).
(1)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)恒有兩個(gè)不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且線段AB的中點(diǎn)C在函數(shù)的圖象上,求實(shí)數(shù)b的最小值.
(參考公式:若,則線段AB的中點(diǎn)坐標(biāo)為)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月生產(chǎn)x臺(tái)某種產(chǎn)品的收入為R(x)元,成本為C(x)元,且R(x)=3 000x-20x2,C(x)=500x+4 000(x∈N*).現(xiàn)已知該公司每月生產(chǎn)該產(chǎn)品不超過(guò)100臺(tái).
(1)求利潤(rùn)函數(shù)P(x)以及它的邊際利潤(rùn)函數(shù)MP(x);
(2)求利潤(rùn)函數(shù)的最大值與邊際利潤(rùn)函數(shù)的最大值之差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

武漢市某地西瓜從2012年6月1日起開(kāi)始上市。通過(guò)市場(chǎng)調(diào)查,得到西瓜種植成本Q(單位:元/kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:

時(shí)間t
50
110
250
種植成本Q
150
108
150
求:1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西瓜種植成本Q與上市時(shí)間t的變化關(guān)系。
Q=at+b,       Q=,       Q=      a,       Q=a.
2)利用你選取的函數(shù),求西瓜種植成本最低時(shí)的上市天數(shù)及最低種植成本。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)最大值為,且
⑴求的解析式;
⑵求上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案