為了解學生身高情況,某校以10%的比例對全校700名學生按性別進行分層抽樣調(diào)查,測得身高情況的統(tǒng)計圖如下:

(Ⅰ)估計該校男生的人數(shù);
(Ⅱ)估計該校學生身高在170~185 cm之間的概率;
(Ⅲ)從樣本中身高在180~190 cm之間的男生中任選2人,求至少有1人身高在185~190 cm之間的概率.

(1)樣本中男生人數(shù)為40,由分層抽樣比例為10%估計全校男生人數(shù)為400.
(2) P1=0.5.(3)率P2.

解析試題分析:(1)樣本中男生人數(shù)為40,由分層抽樣比例為10%估計全校男生人數(shù)為400.
(2)由統(tǒng)計圖知,樣本中身高在170~185 cm之間的學生有14+13+4+3+1=35人,樣本容量為70,所以樣本中學生身高在170~185 cm之間的頻率f==0.5,故由f估計該校學生身高在170~185 cm之間的概率P1=0.5.
(3)樣本中身高在180~185 cm之間的男生有4人,設其編號為①,②,③,④,樣本中身高在185~190 cm之間的男生有2人,設其編號為⑤,⑥,從上述6人中任取2人的樹狀圖為:

故從樣本中身高在180~190 cm之間的男生中任選2人的所有可能結果數(shù)為15,至少有1人身高在185~190 cm之間的可能結果數(shù)為9,因此,所求概率P2.
考點:分層抽樣,頻率分布直方圖,古典概型概率的計算。
點評:中檔題,頻率分布直方圖中,頻率=頻數(shù)÷組距。涉及古典概型概率的計算問題,關鍵是弄清“事件數(shù)”,常常利用“樹圖法”或“坐標法”。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

為了調(diào)查某大學學生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結果:
表1:男生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)





人數(shù)
5
25
30
25
15
表2:女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘)





人數(shù)
10
20
40
20
10
(Ⅰ)若該大學共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(Ⅱ)完成表3的列聯(lián)表,并回答能否有90%的把握認為“學生周日上網(wǎng)時間與性別有關”?
(Ⅲ)從表3的男生中“上網(wǎng)時間少于60分鐘”和“上網(wǎng)時間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取兩人,求至少有一人上網(wǎng)時間超過60分鐘的概率.
表3 :
 
上網(wǎng)時間少于60分鐘
上網(wǎng)時間不少于60分鐘
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為調(diào)查甲、乙兩校高三年級學生某次聯(lián)考數(shù)學成績情況,用簡單隨機抽樣,從這兩校中各抽取30名高三年級學生,以他們的數(shù)學成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如下:

(Ⅰ)若甲校高三年級每位學生被抽取的概率為0.05,求甲校高三年級學生總人數(shù),并估計甲校高三年級這次聯(lián)考數(shù)學成績的及格率(60分及60分以上為及格);
(Ⅱ)設甲、乙兩校高三年級學生這次聯(lián)考數(shù)學平均成績分別為,估計的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市為節(jié)約用水,計劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標準,通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:

分組
頻數(shù)
頻率
[0,1)
10
0.10
[1,2)

0.20
[2,3)
30
0.30
[3,4)
20
 
[4,5)
10
0.10
[5,6]
10
0.10
合計
100
1.00

(1)求右表中的值;
(2)請將頻率分布直方圖補充完整,并根據(jù)直方圖估計該市每位居民月均用水量的眾數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:

分組
頻數(shù)












合計

(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)估計纖度落在中的概率及纖度小于的概率是多少?
(3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在調(diào)查男女乘客是否暈機的情況中,已知男乘客暈機為28人,不會暈機的也是28人,而女乘客暈機為28人,不會暈機的為56人,
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.05的前提下認為暈機與性別有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

延遲退休年齡的問題,近期引發(fā)社會的關注.人社部于2012年7月25日上午召開新聞發(fā)布會表示,我國延遲退休年齡將借鑒國外經(jīng)驗,擬對不同群體采取差別措施,并以“小步慢走”的方式實施.推遲退休年齡似乎是一種必然趨勢,然而反對的聲音也隨之而起.現(xiàn)對某市工薪階層關于“延遲退休年齡”的態(tài)度進行調(diào)查,隨機抽取了50人,他們月收入的頻數(shù)分布及對“延遲退休年齡”反對的人數(shù)

月收入(元)
[1000,2000)
[2000,3000)
[3000,4000)
[4000,5000)
[5000,6000)
[6000,7000)
頻數(shù)
5
10
15
10
5
5
反對人數(shù)
4
8
12
5
2
1
(1)由以上統(tǒng)計數(shù)據(jù)估算月收入高于4000的調(diào)查對象中,持反對態(tài)度的概率;
(2)若對月收入在[1000,2000),[4000,5000)的被調(diào)查對象中各隨機選取兩人進行跟蹤調(diào)查,記選中的4人中贊成“延遲退休年齡”的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某電視臺舉辦了“中華好聲音”大型歌手選秀活動,過程分為初賽、復賽和決賽,經(jīng)初賽進入復賽的40名選手被平均分成甲、乙兩個班,由組委會聘請兩位導師各負責一個班進行聲樂培訓。下面是根據(jù)這40名選手參加復賽時獲得的100名大眾評審的支持票數(shù)制成的莖葉圖:

賽制規(guī)定:參加復賽的40名選手中,獲得的支持票數(shù)排在前5名的選手可進入決賽,若第5名出現(xiàn)并列,則一起進入決賽;另外,票數(shù)不低于95票的選手在決賽時擁有“優(yōu)先挑戰(zhàn)權”。
1、從進入決賽的選手中隨機抽出3名,求其中恰有1名擁有“優(yōu)先挑戰(zhàn)權”的概率;
2、電視臺決定,復賽票數(shù)不低于85票的選手將成為電視臺的“簽約歌手”,請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成為‘簽約歌手’與選擇的導師有關?

 
甲班
乙班
合計
簽約歌手
 
 
 
末簽約歌手
 
 
 
合計
 
 
 
下面臨界值表僅供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
參考公式:K2= ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


某車間為了規(guī)定工時額,需確定加工零件所花費的時間,為此做了4次試驗,得到的數(shù)據(jù)如下圖:若加工時間與零件個數(shù)之間有較好的線性相關關系。(


 
2
 
3
 
4
 
5
 

 
2.5
 
3
 
4
 
4.5
 
 
(1)求加工時間與零件個數(shù)的線性回歸方程;
(2)試預報加工10個零件需要的時間。
(附:回歸方程系數(shù)公式)

查看答案和解析>>

同步練習冊答案