已知
,
分別為雙曲線
,
的左、右焦點,若在右支上存在點
,使得點
到直線
的距離為
,則該雙曲線的離心率的取值范圍是( )
試題分析:設(shè)右支上存在點
使點
到直線
的距離為
,則
,
與橢圓方程聯(lián)立,
,消去
整理得:
,若存在點
,則方程的
由圖形知
恒成立,得:由
得
,
,得
,
,
,解得:
,故選C.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的對稱軸為坐標軸,焦點是
,又點
在橢圓
上.
(1)求橢圓
的方程;
(2)已知直線
的斜率為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,直線
與圓
相切.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
的交點為
,求弦長
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(1)已知點
和
,過點
的直線
與過點
的直線
相交于點
,設(shè)直線
的斜率為
,直線
的斜率為
,如果
,求點
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在
中,
的外角平分線
與邊
的延長線相交于點
,則
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
的離心率為
,長軸長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足
,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)雙曲線
的虛軸長為2,焦距為
,則雙曲線的漸近線方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是橢圓的兩個焦點,過
的直線
交橢圓于
兩點,若
的周長為
,則橢圓方程為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是雙曲線
上不同的三點,且
連線經(jīng)過坐標原點,若直線
的斜率乘積
,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線
是平面內(nèi)與定點
和定直線
的距離的積等于
的點的軌跡.給出下列四個結(jié)論:
①曲線
過坐標原點;
②曲線
關(guān)于
軸對稱;
③曲線
與
軸有
個交點;
④若點
在曲線
上,則
的最小值為
.
其中,所有正確結(jié)論的序號是___________.
查看答案和解析>>