(本小題滿分12分)設(shè)計一副宣傳畫,要求畫面積為4840,畫面的寬與高的比為,畫面的上,下各留8空白,左右各留5空白,怎樣確定畫面的高于寬尺寸,能使宣傳畫所用紙張面積最?

高88,寬55,

解析試題分析:設(shè)畫面高為xcm,寬為kxcm,設(shè)紙張面積為S,根據(jù)矩形的面積公式建立面積的表達式,然后根據(jù)基本不等求出函數(shù)的最值即可.設(shè)畫面高為xcm,寬為kxcm,
則kx2=4840設(shè)紙張面積為S,則有S=(x+16)(kx+10)=kx2+(16k+10)x+160,將代入到上式中可知

故可知高88,寬55,
考點:函數(shù)模型的運用
點評:本題主要考查了函數(shù)模型的選擇與應(yīng)用,以及基本不等式在最值問題中的應(yīng)用,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

鑫隆房地產(chǎn)公司用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費用為(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù) 且關(guān)于的方程上有兩個不相等的實數(shù)根.⑴求的解析式.⑵若總有成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)若對一切實數(shù)x恒成立,求實數(shù)a的取值范圍。
(2)求在區(qū)間上的最小值的表達式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)的定義域是,且滿足,,如果對于0<x<y,都有
(1)求;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知設(shè)
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并予以證明;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知關(guān)于x的方程x2+(m-3)x+m=0
(1)若此方程有實數(shù)根,求實數(shù)m的取值范圍.
(2)若此方程的兩實數(shù)根之差的絕對值小于,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率P與每日生產(chǎn)產(chǎn)品件數(shù)x(x∈N*)間的關(guān)系為P,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%).
(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分6分)
(1)計算
(2)已知,求的值.

查看答案和解析>>

同步練習(xí)冊答案