在三角形ABC所在平面內(nèi)有一點H滿足,則H點是三角形ABC的   
【答案】分析:根據(jù)向量的減法分別用 表示 ,利用數(shù)量積運算和題意代入式子進行化簡,證出HC⊥AB,同理可得HB⊥AC,HA⊥BC,即證出H是△ABC的垂心.
解答:解:設(shè) ,,則 ,
由題可知,,
∴||2+||2=||2+||2,化簡可得 =,即( )•=0,
,∴,即HC⊥AB.
同理可得HB⊥AC,HA⊥BC.
∴H是△ABC的垂心.
故答案為:垂心.
點評:本題考查了向量在幾何中應(yīng)用,主要利用向量的線性運算以及數(shù)量積進行化簡證明,特別證明垂直主要根據(jù)題意構(gòu)造向量利用數(shù)量積為零進行證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC所在平面內(nèi)有一點H滿足
HA
2
+
BC
2
=
HB
2
+
CA
2
=
HC
2
+
AB
2
,則H點是三角形ABC的
垂心
垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽無為開城中學(xué)高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:填空題

在三角形ABC所在平面內(nèi)有一點H滿足   ,則H點是三角形ABC的­­­­­­­­____________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三角形ABC所在平面內(nèi)有一點H滿足
HA
2
+
BC
2
=
HB
2
+
CA
2
=
HC
2
+
AB
2
,則H點是三角形ABC的______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC所在平面內(nèi)有一點H滿足                                    ,則H點是三角形ABC的­­­­­­­­____________

查看答案和解析>>

同步練習(xí)冊答案