設橢圓()的兩個焦點是和(),且橢圓與圓有公共點.
(1)求的取值范圍;
(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程.
科目:高中數學 來源: 題型:
(1)求實數m的取值范圍;
(2)在直線l:y=x+2上存在一點E,使得?|EF1|+|EF2|取得最小值,求此最小值及此時橢圓的方程;
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線l與橢圓交于不同的兩點A、B,滿足=,且使得過點N(0,-1)、Q的直線,有·=0?若存在,求出k的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2014屆湖北荊門高二上學期期末教學質量檢測理科數學試卷(解析版) 題型:解答題
(本小題滿分14分)
設橢圓()的兩個焦點是和(),且橢圓與圓有公共點.
(1)求的取值范圍;
(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(3)對(2)中的橢圓,直線()與交于不同的兩點、,若線段的垂直平分線恒過點,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年遼寧實驗、東北師大附、哈師大附中高三第二次模擬考試理數學卷(解析版) 題型:解答題
設橢圓C:的兩個焦點為F1、F2,點B1為其短軸的一個端點,滿足,。
(1)求橢圓C的方程;
(2)過點M 做兩條互相垂直的直線l1、l2設l1與橢圓交于點A、B,l2與橢圓交于點C、D,求的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
(Ⅰ)求實數m的取值范圍;
(Ⅱ)設L是相應于焦點F2的準線,直線PF2與L相交于點Q.若=
2-.求直線PF2的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com