如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形.∠DAB=60°,AB=2AD,PD⊥底面
ABCD.
(Ⅰ)證明:PA⊥BD
(Ⅱ)設(shè)PD=AD=1,求棱錐D-PBC的高.
(Ⅰ)證明:因?yàn)椤螪AB=60°,AB=2AD,由余弦定理得BD=
3
AD
,
從而BD2+AD2=AB2,故BD⊥AD
又PD⊥底面ABCD,可得BD⊥PD
所以BD⊥平面PAD.故PA⊥BD.
(II)作DE⊥PB于E,已知PD⊥底面ABCD,
則PD⊥BC,由(I)知,BD⊥AD,又BCAD,
∴BC⊥BD.
故BC⊥平面PBD,BC⊥DE,
則DE⊥平面PBC.
由題設(shè)知PD=1,則BD=
3
,PB=2.
根據(jù)DE•PB=PD•BD,得DE=
3
2
,
即棱錐D-PBC的高為
3
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面四邊形ABCD是菱形,∠DAB=60°,E為PC中點(diǎn),F(xiàn)是線段DE上任意一點(diǎn).
(1)求證:AD⊥PB;
(2)若點(diǎn)M為AB的中點(diǎn),N為DC的中點(diǎn),求證:平面EMN平面PAD;
(3)設(shè)P,A,F(xiàn)三點(diǎn)確定的平面為a,平面a與平面DEB的交線為l,試判斷直線PA與l的位置關(guān)系,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是∠DAB=60°,且邊長(zhǎng)為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD.
(1)若G為AD邊的中點(diǎn),求證:BG⊥平面PAD;
(2)求二面角A-BC-P的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABC,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若點(diǎn)M在線段EF上運(yùn)動(dòng),設(shè)平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐V-ABCD中底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD
(1)證明:AB⊥平面VAD;
(2)求面VAD與面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點(diǎn),PA⊥平面ABC,則四面體P-ABC的四個(gè)面中,直角三角形的個(gè)數(shù)有( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求證:PA平面MBD;
(2)試問:在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知α∩β=CD,EA⊥α,垂足為A,EB⊥β,垂足為B,求證CD⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,點(diǎn)D,E分別是BC,B1C1的中點(diǎn),BC1∩B1D=F,BC=
2
BB1
.求證:
(1)平面A1EC平面AB1D;
(2)平面A1BC1⊥平面AB1D.

查看答案和解析>>

同步練習(xí)冊(cè)答案