某校高三(1)班共有名學生,他們每天自主學習的時間全部在分鐘到分鐘之間,按他們學習時間的長短分個組統(tǒng)計,得到如下頻率分布表:
組別 | 分組 | 頻數(shù) | 頻率 |
第一組 | | ||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |
(1)(2)(3)
解析試題分析:
(1)第二組的頻數(shù)已知,則根據(jù)根據(jù)頻率的計算公式(頻率=頻數(shù)除以總數(shù))即可得到頻率s,再利用各組頻率之和為1,即可計算得到第五組的頻率t.
(2)根據(jù)抽樣的原理,即在抽樣過程中,保持每個個體被抽到的可能性相同,則要在40人中抽去20人,即抽取的比列為0.5,在第一組學生中抽取的比列也為0.5,即需要2人.
(3)由(2)可以知道為4選2,首先對4個人進行編號,然后列出4抽2的所有的基本事件,并計算得到滿足抽取的兩個人一個為女生,一個為男生的基本事件數(shù),根據(jù)古典概型的概率計算公式即可得到相應的概率.
試題解析:
(1),. 4分
(2)設應抽取名第一組的學生,則得.
故應抽取2名第一組的學生. 6分
(3)在(2)的條件下應抽取2名第一組的學生,記第一組中2名男生為,2名女生為.
按時間用分層抽樣的方法抽取2名第一組的學生共有種結果,列舉如下:
. 9分
其中既有男生又有女生被抽中的有這4種結果, 10分
所以既有男生又有女生被抽中的概率為. 12分
考點:古典概型頻率頻數(shù)分層抽樣
科目:高中數(shù)學 來源: 題型:解答題
如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.
(1)求此人到達當日空氣質(zhì)量優(yōu)良的概率;
(2)求此人在該市停留期間只有1天空氣重度污染的概率;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
爸爸和亮亮用4張撲克牌(方塊2,黑桃4,黑桃5,梅花5)玩游戲,他倆將撲克牌洗勻后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.
(1)若爸爸恰好抽到了黑桃4.
①請把右面這種情況的樹形圖繪制完整;
②求亮亮抽出的牌的牌面數(shù)字比4大的概率.
(11)爸爸、亮亮約定,若爸爸抽到的牌的牌面數(shù)字比亮亮的大,則爸爸勝;反之,則亮亮贏,你認為這個游戲是否公平?如果公平,請說明理由,如果不公平,更換一張撲克牌使游戲公平.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在一次面試中,每位考生從4道題a、b、c、d中任抽兩題做,假設每位考生抽到各題的可能性相等,且考生相互之間沒有影響.
(1)若甲考生抽到a、b題,求乙考生與甲考生恰好有一題相同的概率;
(2)設某兩位考生抽到的題中恰好有X道相同,求隨機變量X的概率分布.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個袋中裝有形狀大小完全相同的球9個,其中紅球3個,白球6個,每次隨機取1個,直到取出3次紅球即停止.
(1)從袋中不放回地取球,求恰好取4次停止的概率P1;
(2)從袋中有放回地取球.
①求恰好取5次停止的概率P2;
②記5次之內(nèi)(含5次)取到紅球的個數(shù)為,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料,若4杯都選對,則月工資定為3500元;若4杯選對3杯,則月工資定為2 800元,否則月工資定為2100元,令X表示此人選對A飲料的杯數(shù),假設此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列:
(2)求此員工月工資的期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據(jù),制表如下:
甲公司某員工A | | 乙公司某員工B | ||||||||||||
3 | 9 | 6 | 5 | 8 | 3 | 3 | 2 | 3 | 4 | 6 | 6 | 6 | 7 | 7 |
| | | | | | 0 | 1 | 4 | 4 | 2 | 2 | 2 | | |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數(shù)兌換獎品.若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≤3的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com