【題目】過拋物線焦點的直線與拋物線交于兩點,與圓交于、兩點,若有三條直線滿足,則的取值范圍為______.

【答案】

【解析】

分直線軸和直線軸不垂直兩種情況討論,在直線軸時,求出、、的坐標(biāo)進行驗證,在直線軸不垂直時,設(shè)直線的方程為,將直線的方程與拋物線的方程聯(lián)立,利用韋達(dá)定理可得出,從而可求出的取值范圍.

1)當(dāng)直線軸時,直線與拋物線交于、,與圓交于,,滿足.

2)當(dāng)直線不與軸垂直時,設(shè)直線方程,設(shè)點,

聯(lián)立方程組,化簡得,

由韋達(dá)定理,

由拋物線的定義,過焦點的線段,

當(dāng)四點順序為、、、時,

,的中點為焦點,這樣的不與軸垂直的直線不存在;

當(dāng)四點順序為、、時,,,

,,即,

當(dāng)時存在互為相反數(shù)的兩斜率,即存在關(guān)于對稱的兩條直線.

綜上,當(dāng)時有三條滿足條件的直線.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心在軸的正半軸上,與軸相交于點,且直線被圓截得的弦長為.

1)求圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線與圓交于兩點,那么以為直徑的圓能否經(jīng)過原點,若能,請求出直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農(nóng)家樂”跟蹤調(diào)查了天.得到的統(tǒng)計數(shù)據(jù)如下表,為收費標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費標(biāo)準(zhǔn)與“入住率”的散點圖如圖

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若從以上六家“農(nóng)家樂”中隨機抽取兩家深入調(diào)查,記為“入住率”超過的農(nóng)家樂的個數(shù),求的概率分布列;

(2)令,由散點圖判斷哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))

(3)若一年按天計算,試估計收費標(biāo)準(zhǔn)為多少時,年銷售額最大?(年銷售額入住率收費標(biāo)準(zhǔn)

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P到直線y=﹣4的距離比點P到點A0,1)的距離多3

(1)求點P的軌跡方程;

(2)經(jīng)過點Q0,2)的動直線l與點P的軌交于MN兩點,是否存在定點R使得∠MRQ=∠NRQ?若存在,求出點R的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.首屆中國國際進口博覽會的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽馬.如圖所示,在陽馬中,底面

1)若,斜梁與底面所成角為,求立柱的長(精確到);

2)證明:四面體為鱉臑;

3)若,,為線段上一個動點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C頂點在坐標(biāo)原點,焦點F在Y軸的非負(fù)半軸上,點是拋物線上的一點.

(1)求拋物線C的標(biāo)準(zhǔn)方程

(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當(dāng)P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是平面內(nèi)互不平行的三個向量,,有下列命題:

方程不可能有兩個不同的實數(shù)解;

方程有實數(shù)解的充要條件是

方程有唯一的實數(shù)解;

方程沒有實數(shù)解.

其中真命題有 .(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,EAC的中點,三棱錐的體積為

(1)求三棱錐的高;

(2)在線段AB上取一點D,當(dāng)D在什么位置時,的夾角大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到焦點的距離為4,動直線交拋物線于坐標(biāo)原點O和點A,交拋物線的準(zhǔn)線于點B,若動點P滿足,動點P的軌跡C的方程為

1)求出拋物線的標(biāo)準(zhǔn)方程;

2)求動點P的軌跡方程;

3)以下給出曲線C的四個方面的性質(zhì),請你選擇其中的三個方面進行研究:①對稱性;②范圍;③漸近線;④時,寫出由確定的函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案