偶函數(shù)f (x)滿足f(x-1)=f(x+1),且在x[0,1],f(x)=x,則關(guān)于x的方程f(x)=()xx[0,4]上解的個數(shù)是(  )

(A)1 (B)2 (C)3 (D)4

 

D

【解析】f(x-1)=f(x+1)x-1換為x,

f(x)=f(x+2)可知T=2.

x[0,1],f(x)=x.

又∵f(x)為偶函數(shù),∴可得圖象如圖:

f(x)=()xx[0,4]上解的個數(shù)是4.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)是定義在(0,+)上的單調(diào)函數(shù),若對任意x(0,+),都有f(f(x)-)=2,f()的值是(  )

(A)5 (B)6 (C)7 (D)8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(三)第一章第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知命題p:方程2x2+ax-a2=0[-1,1]上有解;命題q:只有一個實數(shù)x滿足不等式x2+2ax+2a0,若命題“pq”是假命題,a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(七)第二章第四節(jié)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)=a-是偶函數(shù),a為實常數(shù).

(1)b的值.

(2)當(dāng)a=1,是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(七)第二章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

若函數(shù)f(x)=a|2x-4|(a>0,a1)滿足f(1)=,f(x)的單調(diào)遞減區(qū)間是(  )

(A)(-,2] (B)[2,+)

(C)[-2,+) (D)(-,-2]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(一)第一章第一節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)S為復(fù)數(shù)集C的非空子集.若對任意x,yS,都有x+y,x-y,xyS,則稱S為封閉集.下列命題:

①集合S={a+bi|a,b為整數(shù),i為虛數(shù)單位}為封閉集;

②若S為封閉集,則一定有0S;

③封閉集一定是無限集;

④若S為封閉集,則滿足STC的任意集合T也是封閉集.

其中真命題有     (寫出所有真命題的序號).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(一)第一章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

已知集合M={x|y=},N={x|y=log2(x-2x2)},(MN)=(  )

(A)(,) (B)(-,)[,+)

(C)[0,] (D)(-,0][,+)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十四第七章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)P表示一個點,a,b表示兩條直線,α,β表示兩個平面,給出下列命題,其中正確的命題是(  )

Pa,P∈αa?α;

ab=P,b?βa?β;

ab,a?α,Pb,P∈αb?α;

④α∩β=b,P∈α,P∈βPb.

(A)①② (B)②③ (C)①④ (D)③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十五第七章第四節(jié)練習(xí)卷(解析版) 題型:填空題

如圖所示,ABCD-A1B1C1D1是棱長為a的正方體,M,N分別是下底面的棱A1B1,B1C1的中點,P是上底面的棱AD上的一點,AP=,P,M,N的平面交上底面于PQ,QCD,PQ=    .

 

 

查看答案和解析>>

同步練習(xí)冊答案