【題目】惰性氣體分子為單原子分子,在自由原子情形下,其電子電荷分布是球?qū)ΨQ的.負電荷中心與原子核重合,但如兩個原子接近,則彼此能因靜電作用產(chǎn)生極化(正負電荷中心不重合),從而導(dǎo)致有相互作用力,這稱為范德瓦爾斯相互作用.今有兩個相同的惰性氣體原子,它們的原子核固定,原子核正電荷的電荷量為,這兩個相距為的惰性氣體原子組成體系的能量中有靜電相互作用能,其中為靜電常量,,分別表示兩個原子負電中心相對各自原子核的位移,且和都遠小于,當(dāng)遠小于1時,,則的近似值為( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,是關(guān)于的方程的兩個不等的實根,且,函數(shù)的定義域為,記,分別為函數(shù)的最大值和最小值.
(1)試判斷在上的單調(diào)性;
(2)設(shè),若函數(shù)是奇函數(shù),求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】福利彩票“雙色球”中紅色球由編號為的個球組成.某彩民利用下面的隨機數(shù)表選取組數(shù)作為個紅色球的編號,選取方法是從隨機數(shù)表(如下)第行的第列數(shù)字開始從左向右依次選取兩個數(shù)字,則選出來的第個紅色球的編號為( )
49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 17 34 91 64 |
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準線”,已知橢圓C的“類準線”方程為,長軸長為4.
(1)求橢圓C的方程;
(2)點P在橢圓C的“類準線”上(但不在y軸上),過點P作圓O:的切線l,過點O且垂直于的直線l交于點A,問點A是否在橢圓C上?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)判斷在上的零點的個數(shù),并說明理由.(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個由正四棱錐和正四棱柱構(gòu)成的組合體,正四棱錐的側(cè)棱長為6,為正四棱錐高的4倍.當(dāng)該組合體的體積最大時,點到正四棱柱外接球表面的最小距離是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年1月10日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現(xiàn)抗體.試驗設(shè)計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).
(1)求一個接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;
(2)已知每天接種一次花費100元,現(xiàn)有以下兩種試驗方案:
①若在一個接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗,進行下一接種周期,試驗持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元;
②若在一個接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗,已知試驗至多持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元.
比較隨機變量和的數(shù)學(xué)期望的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0,1,2,3,4,5,6中取出三個不同的數(shù)字組成一個三位數(shù),則這個三位數(shù)的各個位上的數(shù)字之和為奇數(shù)的取法共有_________種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,側(cè)面為矩形,.將繞翻折至,使在平面內(nèi).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com