已知函數(shù)f(x)=
2x2-4x+1,x≥0
-2x2-4x+1,x<0
,A={x|t≤x≤t+1},B={x||f(x)|≥1},若集合A∩B只含有一個(gè)元素,則實(shí)數(shù)t的取值范圍是
0<t<1
0<t<1
分析:首先整理集合B,分兩種情況來寫出不等式,把含有絕對(duì)值的不等式等價(jià)變形,得到一元二次不等式,求出不等式的解集,進(jìn)一步求出集合B的范圍,根據(jù)兩個(gè)集合只有一個(gè)公共元素,得到t的值.
解答:解:∵f(x)=
2x2-4x+1,x≥0
-2x2-4x+1,x<0

要解|f(x)|≥1,需要分類來看,
當(dāng)x≥0時(shí),|2x2-4x+1|≥1
∴2x2-4x+1≥1或2x2-4x+1≤-1
∴x≥2或x≤0或x=1
∵x≥0
∴x≥2或x=1或x=0.
當(dāng)x<0時(shí),|-2x2-4x+1|≥1
∴-2x2-4x+1≥1或-2x2-4x+1≤-1
∴-2≤x≤0或x
2
-1
或x≤-1-
2

∵x<0
∴-2≤x<0或x≤-1-
2

綜上可知B={x|-2≤x≤0或x≤-1-
2
或x≥2或x=1}
∵集合A∩B只含有一個(gè)元素,
∴t>0且t+1<2
∴0<t<1
故答案為:0<t<1
點(diǎn)評(píng):本題考查集合關(guān)系中的參數(shù)取值問題,考查一元二次不等式的解法,本題解題的關(guān)鍵是對(duì)于集合B的整理,過程比較繁瑣,這里是一個(gè)易錯(cuò)點(diǎn),容易忘記x本身的取值,本題是一個(gè)難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案