已知數(shù)列的前項(xiàng)和,數(shù)列滿足 
(Ⅰ)求數(shù)列的通項(xiàng);(Ⅱ)求數(shù)列的通項(xiàng);
(Ⅲ)若,求數(shù)列的前項(xiàng)和
(Ⅰ);(Ⅱ);(Ⅲ)

試題分析:(Ⅰ)由,得當(dāng)時(shí),,當(dāng)時(shí),,不滿足,因此所求.
(Ⅱ)由,可得遞推公式,所以,, ,,將上列各式兩邊累加可得,再根據(jù)等差數(shù)列前項(xiàng)和公式可求得(疊加消項(xiàng)法在求數(shù)列的通項(xiàng)、前項(xiàng)和中常常用到,其特點(diǎn)是根據(jù)等式兩邊結(jié)構(gòu)特征,一邊相加可消掉中間項(xiàng),另一邊相加可以得到某一特殊數(shù)列或是常數(shù)).
(Ⅲ)由題意得當(dāng)時(shí),,當(dāng)時(shí),,所以所求,
將兩式相減得,
從而可求得(錯(cuò)位相減法是求數(shù)列前項(xiàng)和的常用方法,它適用于如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)各項(xiàng)之積構(gòu)成的).
試題解析:(Ⅰ)∵,
.              2分
.          3分
當(dāng)時(shí),
                    4分
(Ⅱ)∵
,
,
,

以上各式相加得

 ,
.                     9分
(Ⅲ)由題意得

,


=
.                   13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是一個(gè)公差大于0的等差數(shù)列,且滿足, .
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足:,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和滿足,
(Ⅰ)求數(shù)列的前三項(xiàng)
(Ⅱ)設(shè),求證:數(shù)列為等比數(shù)列,并指出的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是首項(xiàng)為2,公比為的等比數(shù)列,數(shù)列是首項(xiàng)為-2,第三項(xiàng)為2的等差數(shù)列.
(1)求數(shù)列的通項(xiàng)式.
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列中,, ,則=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列的首項(xiàng),其前項(xiàng)和為,且滿足.若對(duì)任意的,恒成立,則的取值范圍是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若在數(shù)列中,對(duì)任意正整數(shù),都有(常數(shù)),則稱數(shù)列為“等方和數(shù)列”,稱 為“公方和”,若數(shù)列為“等方和數(shù)列”,其前項(xiàng)和為,且“公方和”為,首項(xiàng),則的最大值與最小值之和為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列滿足,,則數(shù)列的通項(xiàng)公式為=    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上畫點(diǎn)或用小石子表示數(shù). 他們研究過如圖所示的三角形數(shù):

 

 
將三角形數(shù)1,3,6,10,記為數(shù)列,將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列. 可以推測(cè):

(Ⅰ)是數(shù)列中的第         項(xiàng);
(Ⅱ)________(用k表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案