【題目】已知函數(shù)f(x)=x3+ax2+bx有兩個極值點(diǎn)x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函數(shù)g(x)=f(x)﹣f(x0),則g(x)( )
A.恰有一個零點(diǎn)
B.恰有兩個零點(diǎn)
C.恰有三個零點(diǎn)
D.至多兩個零點(diǎn)
【答案】B
【解析】解:f(x)=x3+ax2+bx,求導(dǎo),f′(x)=3x2+2ax+b,由函數(shù)f(x)有兩個極值點(diǎn)x1、x2,
則x1、x2是方程3x2+2ax+b=0的兩個根,則x1+x2=﹣ ,x1x2= ,
∴a=﹣ ,①
由x1+2x0=3x2,則x0= =x2+ >x2,
由函數(shù)圖象可知:令f(x1)=f(x)的另一個解為m,
則x3+ax2+bx﹣f(x1)=(x﹣x1)2(x﹣m),
則 ,則m=﹣a﹣2x1,
將①代入②整理得:m= ﹣2x1= =x0,∴f(x)=f(m)=f(x0),
∴g(x)只有兩個零點(diǎn),即x0和m,
所以答案是:B.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()
(1)若,用“五點(diǎn)法”在給定的坐標(biāo)系中,畫出函數(shù)在[0,π]上的圖象.
(2)若偶函數(shù),求
(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求在的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求m的值;
(3)在(2)的條件下,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為,田忌的三匹馬分別為 .三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示: .
(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;
(2)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實情,得知齊王第一場必出上等馬,那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個數(shù)是( )
①函數(shù)f(x)=2x﹣x2的零點(diǎn)有2個;
②函數(shù)y=sin(2x+ )sin( ﹣2x)的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
④ dx= .
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 則( )
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥BC,AB=BC=a,a∈[1,3],圓A是以A為圓心、半徑為2的圓,圓B是以B為圓心、半徑為1的圓,設(shè)點(diǎn)E、F分別為圓A、圓B上的動點(diǎn), ∥(且與同向),設(shè)∠BAE=θ(θ∈[0,π]).
(I)當(dāng)a= ,且θ= 時,求的值;
(Ⅱ)用a,θ表示出,并給出一組a,θ的值,使得最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,函數(shù)恰有兩個不同的零點(diǎn),求實數(shù)的值;
(2)當(dāng)時,
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com