(幾何證明選講選做題)
如圖所示,已知圓O的半徑為2,從圓O外一點(diǎn)A引切線AB和割線AD,C為AD與圓O的交點(diǎn),圓心O到AD的距離為,則AC的長為   
【答案】分析:利用圓心到直線的距離,求出CD的值,然后利用圓的切割線定理求解即可.
解答:解:因?yàn)閳AO的切線AB和割線AD,所以由切割線定理可知AB2=AC•AD,
圓心O到AD的距離為,圓O的半徑為2,
所以CD=2=2,,
所以AB2=AC•(AC+CD),即 15=AC•(AC+2),
解得AC=3,
故答案為:3.
點(diǎn)評(píng):本題考查弦心距、半徑、半弦長滿足的勾股定理以及切割線定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)
自圓O外一點(diǎn)P引切線與圓切于點(diǎn)A,M為PA中點(diǎn),過M引割線交圓于B,C兩點(diǎn).
求證:∠MCP=∠MPB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=60°,則∠BCD=
150°
150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

(2)(不等式選講選做題)若存在實(shí)數(shù)x滿足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍為
(-2,8)
(-2,8)

(3)(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為
7
10
10
的點(diǎn)的個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)
如圖,在Rt△ABC中,∠C=90°,E為AB上一點(diǎn),以BE為直徑作圓O剛好與AC相切于點(diǎn)D,若AB:BC=2:1,  CD=
3
,則圓O的半徑長為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(幾何證明選講選做題)
如圖,AD為圓O直徑,BC切圓O于點(diǎn)E,AB⊥BC,DC⊥BC,AB=4,DC=1,則AD等于
 

查看答案和解析>>

同步練習(xí)冊答案