已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(2)設函數(shù)f(x)的導函數(shù)為f’(x),若存在唯一的實數(shù)x0,使得f(x0)=x0與f′(x0)=0同時成立,求實數(shù)b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.
(1);(2);(3)
【解析】
試題分析:(1)根據(jù)導數(shù)的幾何意義,先求 ,利用,然后將代入,求出`,此點也在函數(shù)f(x)上,代入,即可求出;
(2)根據(jù),消去,得到關于的三次方程,,此方程有唯一解,令,求出,利用導數(shù)求出極值點,以及兩側(cè)的單調(diào)性,從而分析圖像,得到的取值范圍;
(3),因為存在極值,所以在上有根即方程在上有根.得到根與系數(shù)的關系,代入極值,得到的取值范圍.
試題解析:(1)∵ 所以直線的,當時,,將(1,6)代入,得. 4分
(2) ,由題意知消去,
得有唯一解.
令,則, 6分
所以在區(qū)間上是增函數(shù),在上是減函數(shù),
又,故實數(shù)的取值范圍是. 9分
(3)
因為存在極值,所以在上有根即方程在上有根. 10分
記方程的兩根為由韋達定理,所以方程的根必為兩不等正根. 12分
所以滿足方程判別式大于零
故所求取值范圍為 14分
考點:1.導數(shù)的幾何意義;2.利用導數(shù)求函數(shù)極值,單調(diào)性;3.導數(shù)解決函數(shù)的綜合問題.
科目:高中數(shù)學 來源:2013-2014學年江西省盟校高三第二次聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題
已知函數(shù),則= ( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省盟校高三第一次聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題
給出下列命題,其中真命題的個數(shù)是( )
①存在,使得成立;
②對于任意的三個平面向量、、,總有成立;
③相關系數(shù)(),值越大,變量之間的線性相關程度越高.
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省宜春市高三考前模擬理科數(shù)學試卷(解析版) 題型:選擇題
雙曲線=1(a>0,b>0)的右焦點是拋物線y2=8x的焦點F,兩曲線的一個公共點為P,且|PF| =5,則此雙曲線的離心率為( )
A. B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省宜春市高三考前模擬文科數(shù)學試卷(解析版) 題型:解答題
在△ABC中,a、b、c分別為角A、B、C所對的邊,且
(2b+c)cosA+acosC =0
(1)求角A的大。
(2)求的最大值,并求取得最大值時角 B.C的大。
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省宜春市高三考前模擬文科數(shù)學試卷(解析版) 題型:選擇題
已知角的頂點與原點重合,始邊與x軸的非負半軸重合,終邊過點,則sin(2-)=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省南昌市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:填空題
實驗員進行一項實驗,先后要實施5個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序C或D實施時必須相鄰,實驗順序的編排方法共有________種.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省高三聯(lián)合考試理科數(shù)學試卷(解析版) 題型:填空題
若不等式的解集為空集,則實數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com