已知各項均為正數(shù)的兩個無窮數(shù)列、滿足.
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項都相等的數(shù)列),且時,求數(shù)列的通項公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個,而數(shù)列惟一確定;
(Ⅲ)設(shè),,求證:.
(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)詳見解析.
【解析】
試題分析:(Ⅰ)由是常數(shù)列,得,進(jìn)而探求數(shù)列項間的關(guān)系;(Ⅱ)將等差數(shù)列、 的通項公式代入,根據(jù)等式恒成立,求首項和公差;(Ⅲ)利用題中所給關(guān)系式對進(jìn)行適當(dāng)放縮,求出上界和下界.
試題解析:
(Ⅰ)因為數(shù)列是常數(shù)列,且,所以①,因此②,①-②得,,這說明數(shù)列的序號為奇數(shù)的項及序號為偶數(shù)的項均按原順序組成公差為2的等差數(shù)列,又,,所以,因此,,即.
(Ⅱ)設(shè)、都是公差分別為,將其通項公式代入得,因為它是恒等式,所以,解得,因此.
由于可以取無窮多非零的實數(shù),故數(shù)列有無窮多個,而數(shù)列惟一確定;
(Ⅲ)因為,且,所以,即,所以,得,因此.
又由得,,而,所以,因此
,所以,所以.
考點:等差數(shù)列、數(shù)列的遞推關(guān)系、數(shù)列與不等式.
科目:高中數(shù)學(xué) 來源: 題型:
n | 1 | 2 | 3 | 4 | 5 |
an | 1 | 5 | 3 | 1 | 2 |
bn | 1 | 6 | 2 | x | y |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
| ||
2 |
|
bn |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an+bn | ||||||
|
bn |
an |
bn+1 |
an+1 |
1+(
|
bn |
an |
2 |
bn |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an+bn | ||
|
bn |
an |
bn |
an |
2 |
bn |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
定義數(shù)列{cn}:c1=0,cn=
|
n | 1 | 2 | 3 | 4 | 5 | |||||
an | 1 | 5 | 3 | 1 | 2 | ||||||
bn | 1 | 6 | 2 | x | y |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com