(12分)
已知是四邊形所在平面外一點,四邊形的菱形,側(cè)面
為正三角形,且平面平面.
(1)若邊的中點,求證:平面.
(2)求證:.

(1)連接
推出證得。
(2)連接,證明得到

解析試題分析:(1)連接
且四邊形是菱形
是正三角形 .........................2分

 .......................4分


 ........................6分
(2)連接
為正三角形 
 ............................8分

 ...........................10分

 .....................12分
考點:本題主要考查立體幾何中線面垂直、線線垂直。
點評:典型題,立體幾何中線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化是高考重點考查內(nèi)容,證明過程中要特別重要表達的準確性與完整性。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)如圖,在多面體ABCDEF中,底面ABCD是 平行四邊形,AB=2EFEFAB,,HBC的中點.求證:FH∥平面EDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分別是ABPD的中點.

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求四面體PEFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長為1的正方體中.

(Ⅰ)求異面直線所成的角;
(Ⅱ)求證平面⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點E在棱PA上,且PE=2EA.

(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,點E是棱CC1的中點。
 
(I)求三棱錐D1—ACE的體積;
(II)求異面直線D1E與AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA,AC、CB、BP的中點.

(1)求證:D、E、F、G四點共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面體PABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個多面體的直觀圖和三視圖如下:(其中分別是中點)

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)如圖,已知在直四棱柱中,
,,

(1)求證:平面;
(2)設(shè)上一點,試確定的位置,使平面,并說明理由.

查看答案和解析>>

同步練習冊答案