兩等差數(shù)列{an}和{bn},前n項(xiàng)和分別為Sn,Tn,且,則=   
【答案】分析:在{an}為等差數(shù)列中,當(dāng)m+n=p+q(m,n,p,q∈N+)時(shí),am+an=ap+aq.所以結(jié)合此性質(zhì)可得:,再根據(jù)題意得到答案.
解答:解:在{an}為等差數(shù)列中,當(dāng)m+n=p+q(m,n,p,q∈N+)時(shí),am+an=ap+aq
所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224615737827293/SYS201311012246157378272007_DA/2.png">,
所以
故答案為:
點(diǎn)評(píng):本題主要考查等差數(shù)列的性質(zhì),即在{an}為等差數(shù)列中,當(dāng)m+n=p+q(m,n,p,q∈N+)時(shí),am+an=ap+aq,此題屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩等差數(shù)列{an}和{bn},前n項(xiàng)和分別為Sn,Tn,且
Sn
Tn
=
7n+2
n+3
,則
a2+a20
b7+b15
=
149
24
149
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省啟東中學(xué)2008-2009學(xué)年高一下學(xué)期第二次月考數(shù)學(xué)試題 題型:022

兩等差數(shù)列{an}和{bn},前n項(xiàng)和分別為Sn,Tn,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩等差數(shù)列{an}和{bn},前n項(xiàng)和分別為Sn,Tn,且
Sn
Tn
=
7n+2
n+3
,則
a2+a20
b7+b15
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩等差數(shù)列{an}和{bn},前n項(xiàng)和分別為Sn,Tn,且
Sn
Tn
=
7n+2
n+3
,則
a2+a20
b7+b15
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案