已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F的直線(xiàn)l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=+成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.
(Ⅰ);(Ⅱ)P(,±),x±y-=0.
【解析】
試題分析:(Ⅰ) 先利用點(diǎn)到直線(xiàn)的距離公式求,再利用離心率求,最后利用參數(shù)的關(guān)系求;(Ⅱ)設(shè)點(diǎn)利用方程組消元后得根與系數(shù)關(guān)系,然后代入題中條件化簡(jiǎn)可求.
試題解析:(Ⅰ) 設(shè)F(c,0),當(dāng)l的斜率為1時(shí),其方程為x-y-c=0,
∴O到l的距離為,
由已知,得=,∴c=1.
由e==,得a=,b==. 4分
(Ⅱ)假設(shè)C上存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=+成立,
設(shè)A(x1,y1),B(x2,y2),則P(x1+x2,y1+y2).
由(Ⅰ),知C的方程為+=1.
由題意知,l的斜率一定不為0,故不妨設(shè)l:x=ty+1.
由,消去x并化簡(jiǎn)整理,得(2t2+3)y2+4ty-4=0.
由韋達(dá)定理,得y1+y2=-,
∴x1+x2=ty1+1+ty2+1=t(y1+y2)+2=-+2=,
∴P(,-).
∵點(diǎn)P在C上,∴+=1,
化簡(jiǎn)整理,得4t4+4t2-3=0,即(2t2+3)(2t2-1)=0,解得t2=.
當(dāng)t=時(shí),P(,-),l的方程為x-y-=0;
當(dāng)t=-時(shí),P(,),l的方程為x+y-=0.
故C上存在點(diǎn)P(,±),使=+成立,此時(shí)l的方程為x±y-=0. 13分
考點(diǎn):橢圓的基本概念,點(diǎn)到直線(xiàn)的距離,根與系數(shù)關(guān)系,設(shè)而不求的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年泉州一中適應(yīng)性練習(xí)文)(12分)已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓C于A,B兩點(diǎn),N為弦AB的中點(diǎn)。
(1)求直線(xiàn)ON(O為坐標(biāo)原點(diǎn))的斜率KON ;
(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角(∈R)使等式:=cos+sin成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年湖北重點(diǎn)中學(xué)4月月考理)(13分
已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓C于A,B兩點(diǎn),N為弦AB的
(1)求直線(xiàn)ON(O為坐標(biāo)原點(diǎn))的斜率KON ;
1) (2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角(∈R)使等式:=cos+sin成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓C于A,B兩點(diǎn),N為弦AB的中點(diǎn)。
(1)求直線(xiàn)ON(O為坐標(biāo)原點(diǎn))的斜率KON ;
(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角(∈R)使等式:=cos+sin成立。w.w.w.k.s.5.u.c.o.m
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓C于A,B兩點(diǎn),N為弦AB的中點(diǎn)。
(1)求直線(xiàn)ON(O為坐標(biāo)原點(diǎn))的斜率KON ;
(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角(∈R)使等式:=cos+sin成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省武漢市高三9月調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F的直線(xiàn)l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=+成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com