要使不等式kx2-kx+1>0對(duì)于x的任意值都成立,則k的取值范圍是______.
∵不等式kx2-kx+1>0對(duì)于x的任意值都成立,
∴當(dāng)k=0時(shí),有1>0恒成立,滿足題意;
當(dāng)k>0時(shí),有△=(-k)2-4k<0,
解得0<k<4,滿足題意;
當(dāng)k<0時(shí),不合題意;
綜上,k的取值范圍是:0≤k<4.
故答案為:[0,4).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),若,,, 試證明:對(duì)于任意,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x2-2px+3在區(qū)間[-少,少]有最小值,記為g(p).
(少)求g(p)的表達(dá)式;
(2)求g(p)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若|f(x)|≤|g(x)|對(duì)任意x∈R恒成立,求a,b;
(3)在(2)的條件下,若對(duì)一切x>2,均有f(x)≥(m+2)x-m-15成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)集合M=[0,1),N=[1,2),函數(shù)f(x)=
2x(x∈M)
4-2x(x∈N)

(1)若x∈M,g(x)=f2(x)-2f(x)+a,且g(x)的最小值為1,求實(shí)數(shù)a的值;
(2)若x0∈M,且f(f(x0))∈M,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義一種運(yùn)算a?b=
a,a≤b
b,a>b
,令f(x)=(3+2x-x2)?|x-t|(t為常數(shù)),且x∈[-3,3],則使函數(shù)f(x)的最大值為3的t的集合是(  )
A.{3,-3}B.{-1,5}C.{3,-1}D.{-3,-1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知f(x)是一次函數(shù),且f{f(x)]=9x+6,求f(x)的解析式
(2)已知二次函數(shù)f(x)滿足:f(2)=-1,f(-1)=-1.且f(x)的最大值為8,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x2-53x+196+|x2-53x+196|,則f(1)+f(2)+…+f(50)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)若a,b,c成等比,有最         值且該值為               

查看答案和解析>>

同步練習(xí)冊(cè)答案