如圖,在四棱錐中,底面是邊長為的正方形,,,且

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一點(diǎn),使直線與平面所成的角是?若存在,求的長;若不存在,請(qǐng)說明理由.
(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,

試題分析:(Ⅰ)先證平面可得。同理可證,最后根據(jù)線面垂直的判定定理可得平面。(Ⅱ)可建系用空間向量法,先求邊長得點(diǎn)的坐標(biāo)即可得向量的坐標(biāo)。先求面和面的法向量,再求兩個(gè)法向量所成角的余弦值。兩法向量所成的角與二面角相等或互補(bǔ)。需觀察圖像的二面角的余弦值。(Ⅲ)假設(shè)棱上存在點(diǎn)滿足條件。設(shè)。在(Ⅱ)以求出面的法向量,根據(jù)線面角的定義可知直線與平面所成的角正弦值等于與面的法向量所成角的余弦值的絕對(duì)值。列式求,若則說明假設(shè)成立,否則假設(shè)不成立。
試題解析:(Ⅰ)證明:在正方形中,.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033608641528.png" style="vertical-align:middle;" />,,
所以 平面.                                      1分
因?yàn)?平面,
所以 .                                            2分
同理,
因?yàn)?,
所以 平面.                                    3分
(Ⅱ)解:連接,由(Ⅰ)知平面

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033608953431.png" style="vertical-align:middle;" />平面,
所以.                                            4分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033608141531.png" style="vertical-align:middle;" />,,
所以
分別以,,所在的直線分別為,軸,建立空間直角坐標(biāo)系,如圖所示.
由題意可得:,,,
所以,,,
設(shè)平面的一個(gè)法向量,
 即 令,得.
所以
同理可求:平面的一個(gè)法向量.                6分
所以
所以二面角的余弦值為.                      8分
(Ⅲ)存在.理由如下:
若棱上存在點(diǎn)滿足條件,設(shè),
所以.       9分
因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033608251456.png" style="vertical-align:middle;" />的一個(gè)法向量為
所以
解得:.
經(jīng)檢驗(yàn)
所以棱上存在點(diǎn),使直線與平面所成的角是,此時(shí)的長為.                  11分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形所在的平面與正方形所在的平面相互垂直,的中點(diǎn).

(1)求證:∥平面;
(2)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長為的正方形, ,且點(diǎn)滿足 .

(1)證明:平面 .
(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置,若不存在請(qǐng)說明理由 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列命題:
垂直于同一直線的兩直線平行.
同平行于一平面的兩直線平行.
同平行于一直線的兩直線平行.
平面內(nèi)不相交的兩直線平行.
其中正確的命題個(gè)數(shù)是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中錯(cuò)誤的是 (  ).
A.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
B.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,αβl,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四面體ABCD中,有如下結(jié)論:
①若,則
②若分別是的中點(diǎn),則的大小等于異面直線所成角的大;
③若點(diǎn)是四面體外接球的球心,則在面上的射影為的外心;
④若四個(gè)面是全等的三角形,則為正四面體.
其中所有正確結(jié)論的序號(hào)是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線,和平面,給出下列四個(gè)命題:

其中真命題的有________(請(qǐng)?zhí)顚懭空_命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是不同的直線,是不同的平面,下列命題中正確的是(    )
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案