甲、乙、丙三人參加某次招聘會,假設甲能被聘用的概率是,甲、丙兩人同時不能被聘用的概率是,乙、丙兩人同時能被聘用的概率為,且三人各自能否被聘用相互獨立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對值,求的分布列與均值(數(shù)學期望).
(1)乙、丙兩人各自被聘用的概率分別為、;(2)詳見解析.

試題分析:(1)分別設乙、丙兩人各自被聘用的概率為、,利用事件的獨立性列出相應的方程進行求解,從而得出乙、丙兩人各自被聘用的概率;(2)先列舉出隨機變量的可能取值,并根據(jù)事件的獨立性求出在相應條件的概率,列出分布列并求出隨機變量的均值(即數(shù)學期望).
試題解析:(1)設乙、丙兩人各自被聘用的概率分別為、,
則甲、丙兩人同時不能被聘用的概率是,解得,
乙、丙兩人同時能被聘用的概率為,
因此乙、丙兩人各自被聘用的概率分別為、;
(2)的可能取值有、,

,
,
因此隨機變量的分布列如下表所示






所以隨機變量的均值(即數(shù)學期望).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某高校在2012年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績較高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
(ⅰ)已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙恰有一人進入第二輪面試的概率;
(ⅱ)學校決定在這已抽取到的6名學生中隨機抽取2名學生接受考官L的面試,設第4組中有名學生被考官L面試,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

據(jù)IEC(國際電工委員會)調查顯示,小型風力發(fā)電項目投資較少,且開發(fā)前景廣闊,但受風力自然資源影響,項目投資存在一定風險.根據(jù)測算,風能風區(qū)分類標準如下:

假設投資A項目的資金為≥0)萬元,投資B項目資金為≥0)萬元,調研結果是:未來一年內,位于一類風區(qū)的A項目獲利的可能性為,虧損的可能性為;位于二類風區(qū)的B項目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項目的利潤分別為,試寫出隨機變量的分布列和期望,;
(2)某公司計劃用不超過萬元的資金投資于A,B項目,且公司要求對A項目的投
資不得低于B項目,根據(jù)(1)的條件和市場調研,試估計一年后兩個項目的平均利
潤之和的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為隨機變量,從棱長為1的正方體ABCD-A1B1C1D1的八個頂點中任取四個點,當四點共面時,=0,當四點不共面時,的值為四點組成的四面體的體積.
(1)求概率P(=0);
(2)求的分布列,并求其數(shù)學期望E ().

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某網站用“10分制”調查一社區(qū)人們的幸福度.現(xiàn)從調查人群中隨機抽取16名,以下莖葉圖記錄了他們的幸福度分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):

(1)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!,求從這16人隨機選取3人,至多有1人是“極幸!钡母怕;
(2)以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“極幸!钡娜藬(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設袋子中裝有個紅球,個黃球,個藍球,且規(guī)定:取出一個紅球得1分,
取出一個黃球2分,取出藍球得3分。
(1)當時,從該袋子中任。ㄓ蟹呕,且每球取到的機會均等)2個球,記隨機變量為取出此2球所得分數(shù)之和,.求分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C會均等)1個球,記隨機變量為取出此球所得分數(shù).若,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若隨機變量ξ的分布列為:P(ξ=m)=,P(ξ=n)=a.若E(ξ)=2,則D(ξ)的最小值等于   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲、乙兩位射擊運動員,甲擊中環(huán)數(shù)X1B(10,0.9),乙擊中環(huán)數(shù)X2=2Y+1,其中YB(5,0.8),那么下列關于甲、乙兩運動員平均擊中環(huán)數(shù)的說法正確的是(  )
A.甲平均擊中的環(huán)數(shù)比乙平均擊中的環(huán)數(shù)多
B.乙平均擊中的環(huán)數(shù)比甲平均擊中的環(huán)數(shù)多
C.甲、乙兩人平均擊中的環(huán)數(shù)相等
D.僅依據(jù)上述數(shù)據(jù),無法判斷誰擊中的環(huán)數(shù)多

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商場共五層,從五層下到四層有3個出口,從三層下到二層有4個出口,從二層下到一層有4個出口,從一層走出商場有6個出口。安全部門在每層安排了一名警員值班,負責該層的安保工作。假設每名警員到該層各出口處的時間相等,某罪犯在五樓犯案后,欲逃出商場,各警員同時接到指令,選擇一個出口進行圍堵。逃犯在每層選擇出口是等可能的。已知他被三樓警員抓獲的概率為。
(Ⅰ)問四層下到三層有幾個出口?
(Ⅱ)天網恢恢,疏而不漏,犯罪嫌疑人最終落入法網。設抓到逃犯時,他已下了層樓,寫出的分布列,并求。

查看答案和解析>>

同步練習冊答案