已知|
a
|=2
 |
b
|=3
,
a
b
的夾角為60°,
c
=5
a
+3
b
,
d
=3
a
+k
b
,當(dāng)實數(shù)k為何值時,
(1)
c
d
   
(2)
c
d
分析:(1)由
c
d
 可知存在實數(shù)t,使5
a
+3
b
=t(3
a
+k
b
)
,可得k與t的方程組,解之可得;(2)由
c
d
=(5
a
+3
b
)•(3
a
+k
b
)=0可得關(guān)于k的方程,解之即可.
解答:解:(1)由
c
d
 可知存在實數(shù)t,使5
a
+3
b
=t(3
a
+k
b
)

5=3t
3=kt
,解得
t=
5
3
k=
9
5
,
故k=
9
5
時,可得
c
d
;
(2)由
c
d
=(5
a
+3
b
)•(3
a
+k
b
)=0可得
15
a
2
+3k
b
2
+(5k+9)
a
b
=0,
代入數(shù)據(jù)可得15×4+27k+(5k+9)×2×3×
1
2
=0,
解得k=-
29
14
,
故當(dāng)k=-
29
14
時,
c
d
點評:本題考查向量平行與垂直的判定,涉及方程組的解法,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2|
b
|≠0
,且關(guān)于x的方程x2+|
a
|x+
a
b
=0
有實根,則
a
b
的夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2|
b
|
,命題p:關(guān)于x的方程x2+|
a
|x+
a
b
=0
沒有實數(shù)根,命題q:
a
,
b
>∈[0,
π
4
]
,則命題p是命題q的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2|
b
|≠0,且關(guān)于x的方程x2-|
a
|x+
a
b
=0有兩個不同的正實數(shù)根,則
a
b
的夾角范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2|
b
|
,命題p:關(guān)于x的方程x2+|
a
|x+
a
b
=0
沒有實數(shù)根,命題q:
a
,
b
>∈[0,
π
4
]
,則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案