已知命題:拋物線的準線方程為;命題:平面內兩條直線的斜率相等是兩條直線平行的充分不必要條件;則下列命題是真命題的是(    )
A.B.C.D.
C

試題分析:因為拋物線的準線方程為,所以命題p為假命題;兩條直線平行,可能斜率相等,也可能斜率都不存在,所以平面內兩條直線的斜率相等是兩條直線平行的充分不必要條件,命題q為真命題,所以A、為假命題;B、 為假命題;C、為真命題;D、為假命題。
點評:在求拋物線的準線方程時要注意把拋物線的方程轉化為標準方程。此為易錯點。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設為軌跡C上兩點,且,N(1,0),求實數(shù),使,且.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以雙曲線的離心率為首項,以函數(shù)的零點為公比的等比數(shù)列的前項的和
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點,與曲線相切于點,記點的橫坐標為,其中

(1)當時,求的值和點的坐標;
(2)當實數(shù)取何值時,?并求出此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點軸上的動點,點軸上的動點,點為定點,且滿足,.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點且斜率為的直線與曲線交于兩點,,試判斷在軸上是否存在點,使得成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為雙曲線的左準線與x軸的交點,點,若滿足的點在雙曲線上,則該雙曲線的離心率為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的長軸長是短軸長的倍,則橢圓的離心率等于        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論:

(1)ABD為二面角A-BC-D的平面角;(2)ACBD;(3) △ACD是等邊三角形;
(4)直線AB與平面BCD成600的角;
其中正確的結論的序號是        。

查看答案和解析>>

同步練習冊答案