【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,點(diǎn)是曲線上的動(dòng)點(diǎn).點(diǎn)滿足 (為極點(diǎn)).設(shè)點(diǎn)的軌跡為曲線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,已知直線的參數(shù)方程是,(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與直線的普通方程;
(2)設(shè)直線交兩坐標(biāo)軸于,兩點(diǎn),求面積的最大值.
【答案】(1)的直角坐標(biāo)方程為,的普通方程是;(2).
【解析】試題分析:
(1)在極坐標(biāo)系中,設(shè)點(diǎn).由題意可得曲線的極方程為,化為直角坐標(biāo)方程得,消去參數(shù)可得直線的普通方程是.
(2)由直線的方程可得.設(shè),底邊上的高,,結(jié)合三角函數(shù)的性質(zhì)可得,則面積的最大值為.
試題解析:
(1)在極坐標(biāo)系中,設(shè)點(diǎn).
由,得,
代入曲線的方程并整理,
得,
再化為直角坐標(biāo)方程,得,
即曲線的直角坐標(biāo)方程為.
直線的參數(shù)方程(為參數(shù))化為普通方程是.
(2)由直線的方程為,可知.
因?yàn)辄c(diǎn)在曲線上,
所以設(shè),,
則點(diǎn)到直線的距離即為底邊上的高,
所以,其中,
所以,
所以,
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年秋季,我省高一年級(jí)全面實(shí)行新高考政策,為了調(diào)查學(xué)生對(duì)新政策的了解情況,準(zhǔn)備從某校高一三個(gè)班級(jí)抽取10名學(xué)生參加調(diào)查.已知三個(gè)班級(jí)學(xué)生人數(shù)分別為40人,30人,30人.考慮使用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按三個(gè)班級(jí)依次統(tǒng)一編號(hào)為1,2,…,100;使用系統(tǒng)抽樣,將學(xué)生統(tǒng)一編號(hào)為1,2,…,100,并將整個(gè)編號(hào)依次分為10段.如果抽得的號(hào)碼有下列四種情況:
①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;
③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.
關(guān)于上述樣本的下列結(jié)論中,正確的是( )
A. ①③都可能為分層抽樣 B. ②④都不能為分層抽樣
C. ①④都可能為系統(tǒng)抽樣 D. ②③都不能為系統(tǒng)抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為常量,且)的圖像經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)當(dāng)時(shí),函數(shù)的圖像恒在函數(shù)圖像的上方,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且).
(1)判斷的奇偶性并證明;
(2)若,是否存在,使在的值域?yàn)?/span>?若存在,求出此時(shí)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用網(wǎng)絡(luò)外賣 | 偶爾或不用網(wǎng)絡(luò)外賣 | 合計(jì) | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計(jì) | 110 | 90 | 200 |
(1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)求的單調(diào)增區(qū)間;
(3)若,求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知底面為正方形的四棱錐,各側(cè)棱長(zhǎng)都為,底面面積為16,以為球心,2為半徑作一個(gè)球,則這個(gè)球與四棱錐相交部分的體積是( )
A. B. C. D.
【答案】C
【解析】構(gòu)造棱長(zhǎng)為4的正方體,四棱錐O-ABCD的頂點(diǎn)O為正方體的中心,底面與正方體的一個(gè)底面重合.可知所求體積是正方體內(nèi)切球體積的,所以這個(gè)球與四棱錐O-ABCD相交部分的體積是: .
本題選擇C選項(xiàng).
點(diǎn)睛:與球有關(guān)的組合體問(wèn)題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,求幾何體的體積,要注意分割與補(bǔ)形.將不規(guī)則的幾何體通過(guò)分割或補(bǔ)形將其轉(zhuǎn)化為規(guī)則的幾何體求解.
【題型】單選題
【結(jié)束】
13
【題目】若,為第二象限角,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知平行于軸的動(dòng)直線交拋物線于點(diǎn),點(diǎn)為的焦點(diǎn).圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.
⑴求曲線的方程;
⑵若直線與曲線相切于點(diǎn),過(guò)且垂直于的直線為,直線,分別與軸相交于點(diǎn),.當(dāng)線段的長(zhǎng)度最小時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)求當(dāng)時(shí),的解析式;
(2)在網(wǎng)格中繪制的圖像;
(3)若方程有四個(gè)根,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com